Advertisement

Biology and Fertility of Soils

, Volume 52, Issue 7, pp 1021–1035 | Cite as

Strategic tillage increased the relative abundance of Acidobacteria but did not impact on overall soil microbial properties of a 19-year no-till Solonetz

  • Hongwei Liu
  • Lilia C. Carvalhais
  • Mark Crawford
  • Yash P. Dang
  • Paul G. Dennis
  • Peer M. Schenk
Original Paper

Abstract

Continuous no-till (NT) farming is widely practiced in Australia, but it is prone to weed infestation. Strategic tillage (ST) can be used to effectively control weeds; however, it is unclear whether ST influences soil microbial properties. We investigated whether one- or two-time tillage events using a chisel plough influence the soil microbial properties of an acidic Solonetz with 19-year NT management. Soil samples were collected from 0–10 and 10–20 cm soil depths, 1 year post-ST after a chickpea crop. Microbial biomass C (MBC) and N (MBN), community-level physiological profiling (CLPP, MicroResp™) and fluorescein diacetate as an indicator of total microbial activity (TMA) were determined in soil. The composition of soil microbial communities was profiled using terminal reaction fragment length polymorphism (T-RFLP) and 16S rRNA sequencing. Detection and DNA-based quantitation of ChitinaseA, nifH, amoA, narG, nirK and nosZ genes were used to assess ST effects on soil C and N cycling. Our results show that one- and two-time chisel did not change soil MBC/MBN, TMA or CLPP. Likewise, ST did not change the composition of soil microbial communities and the abundance of genes encoding enzymes involved in key steps of C and N reactions at either soil depth. However, one-time chisel increased relative abundance of Acidobacteria RB41 and Acidobacteria iii1-15, and two-time chisel slightly increased the average C utilisation, both at 10–20 cm soil depth. This suggests that even after a cropping season of chickpea, ST effects on soil microbial properties of the NT Solonetz were negligible. One- and two-time chisel could potentially address the issues associated with long-term NT without impacting overall soil microbial properties.

Keywords

Acidobacteria Actinobacteria Conservation farming Carbon and nitrogen cycling Soil microbial properties 

Notes

Acknowledgments

We wish to thank the Grains Research & Development Corporation, Australia, for financial support. HL gratefully acknowledges financial support from China Scholarship Council. The authors acknowledge Rodney Hamilton for performing the tillage and field work, Christian Forstner for preparing the sequencing libraries and Dr Jessica Dalton-Morgan for proof-reading the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

374_2016_1138_Fig7_ESM.gif (329 kb)
Supplementary Fig. 1

Verification of primer specificity for qPCR. Amplification products were tested on a 1.5 % agarose gel. A 1 Kbp ladder was used as marker (Fermentas Scientific). Correct sizes of amplification products for these six genes were as follows: Chitinase—400 bp; nifH—459 bp; amoA—491 bp; nirK—326 bp; narG—650 bp; and nosZ—700 bp (GIF 328 kb)

374_2016_1138_MOESM1_ESM.tif (453 kb)
High Resolution Image (TIF 453 kb)

References

  1. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105:11512–11519. doi: 10.1073/pnas.0801925105 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J (2006) Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Till Res 86:237–245. doi: 10.1016/j.still.2005.02.023 CrossRefGoogle Scholar
  3. Bell M, Seymour N, Stirling GR, Stirling AM, Van Zwieten L, Vancov T, Sutton G, Moody P (2006) Impacts of management on soil biota in Vertosols supporting the broadacre grains industry in northern Australia. Soil Res 44:433–451. doi: 10.1071/SR05137 CrossRefGoogle Scholar
  4. Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW (2012) Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Meth 9:425–426. doi: 10.1038/nmeth.1990 CrossRefGoogle Scholar
  5. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi: 10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  6. Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49:637–644. doi: 10.1016/j.pedobi.2005.06.003 CrossRefGoogle Scholar
  7. Campbell C, Janzen H, Juma N (1997) Case studies of soil quality in the Canadian prairies: long-term field experiments. Dev Soil Sci 25:351–398. doi: 10.1016/S0166-2481(97)80044-X CrossRefGoogle Scholar
  8. Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599. doi: 10.1128/AEM.69.6.3593-3599.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7:335–336. doi: 10.1038/nmeth.f.303 CrossRefGoogle Scholar
  10. Chaer G, Fernandes M, Myrold D, Bottomley P (2009) Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microbial Ecol 58:414–424. doi: 10.1007/s00248-009-9508-x CrossRefGoogle Scholar
  11. Crawford M, Rincon-Florez V, Balzer A, Dang Y, Carvalhais L, Liu H, Schenk P (2015) Changes in the soil quality attributes of continuous no-till farming systems following a strategic tillage. Soil Res 53:263–273. doi: 10.1071/SR14216 CrossRefGoogle Scholar
  12. Dang YP, Seymour NP, Walker SR, Bell MJ, Freebairn DM (2015a) Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: I. drivers and implementation. Soil Till Res 152:104–114. doi: 10.1016/j.still.2015.03.009 CrossRefGoogle Scholar
  13. Dang Y, Moody P, Bell M, Seymour N, Dalal R, Freebairn D, Walker S (2015b) Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil Till Res 152:115–123. doi: 10.1016/j.still.2014.12.013 CrossRefGoogle Scholar
  14. de Moraes Sá JC, Tivet F, Lal R, Briedis C, Hartman DC, dos Santos JZ, dos Santos JB (2014) Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol. Soil Till Res 136:38–50. doi: 10.1016/j.still.2013.09.010 CrossRefGoogle Scholar
  15. Derpsch R, Friedrich T, Kassam A, Li H (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–25. doi: 10.3965/j.issn.1934-6344.2010.01.0-0 Google Scholar
  16. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Micro 2:621–631. doi: 10.1038/nrmicro954 CrossRefGoogle Scholar
  17. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eiland F, Nielsen JD (1996) A method using peroxydisulphate digestion for total N analyses in soils and in soil microbial biomass extracts. Acta Agric Scand Sect B - Soil & Plant Science 46:81–85. doi: 10.1080/09064719609413119 Google Scholar
  19. Engel F, Bertol I, Ritter S, Gonzalez AP, Paz-Ferreiro J, Vazquez EV (2009) Soil erosion under simulated rainfall in relation to phenological stages of soybeans and tillage methods in Lages, SC, Brazil. Soil Till Res 103:216–221. doi: 10.1016/j.still.2008.05.017 CrossRefGoogle Scholar
  20. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176. doi: 10.1016/S0038-0717(02)00251-1 CrossRefGoogle Scholar
  21. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi: 10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  22. Gonzalez-Quiñones V, Stockdale EA, Banning NC, Hoyle FC, Sawada Y, Wherrett AD, Jones DL, Murphy DV (2011) Soil microbial biomass—Interpretation and consideration for soil monitoring. Soil Res 49:287–304. doi: 10.1071/SR10203 CrossRefGoogle Scholar
  23. Green V, Stott D, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701. doi: 10.1016/j.soilbio.2005.06.020 CrossRefGoogle Scholar
  24. Gregory AS, Watts CW, Griffiths BS, Hallett PD, Kuan HL, Whitmore AP (2009) The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma 153:172–185. doi: 10.1016/j.geoderma.2009.08.002 CrossRefGoogle Scholar
  25. Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioall Sci 5:21–29. doi: 10.4103/0975-7406.106559 Google Scholar
  26. Hayden HL, Drake J, Imhof M, Oxley AP, Norng S, Mele PM (2010) The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia. Soil Biol Biochem 42:1774–1783. doi: 10.1016/j.soilbio.2010.06.015 CrossRefGoogle Scholar
  27. Haynes R (1986) "Uptake and assimilation of mineral nitrogen by plants" in Mineral nitrogen in the plant-soil system, eds. R.J. Haynes (Orlando, FL:Academic Press), 303-378Google Scholar
  28. Isbell R (2002) The Australian soil classification vol 4. CSIRO Publishing, CollingwoodGoogle Scholar
  29. IUSS Working Group WRB (2007) ‘World reference base for soil resources 2006’ World Soil Resources Report No. 103. ftp://ftp.fao.org/docrep/fao/009/a0510e/a0510e00.pdf. Accessed 20 Nov 2015
  30. Jenkinson D, Ladd J (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil Biochemistry, vol 5. Marcel Dekker, New York, pp 415–471Google Scholar
  31. Kaurin A, Kastelec D, Schloter M, Suhadolc M, Grčman H (2015) Consequences of minimum soil tillage on abiotic soil properties and composition of microbial communities in a shallow Cambisol originated from fluvioglacial deposits. Biol Fertil Soils 51:923–933. doi: 10.1007/s00374-015-1037-9 CrossRefGoogle Scholar
  32. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188. doi: 10.1016/j.mimet.2004.04.006 CrossRefPubMedGoogle Scholar
  33. Knowles R (1982) Denitrification. Microbiol Rev 46:43PubMedPubMedCentralGoogle Scholar
  34. Kuan H, Hallett P, Griffiths B, Gregory A, Watts C, Whitmore A (2007) The biological and physical stability and resilience of a selection of Scottish soils to stresses. Eur J Soil Sci 58:811–821. doi: 10.1111/j.1365-2389.2006.00871.x CrossRefGoogle Scholar
  35. Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian P-Y (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664. doi: 10.1038/ismej.2010.165 CrossRefPubMedGoogle Scholar
  36. Li P, Lang M (2014) Gross nitrogen transformations and related N2O emissions in uncultivated and cultivated black soil. Biol and Fertil Soils 50:197–206. doi: 10.1007/s00374-013-0848-9 CrossRefGoogle Scholar
  37. Li M, Cao H, Hong Y, Gu J-D (2011) Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol Biotechnol 89:1243–1254. doi: 10.1007/s00253-010-2929-0 CrossRefPubMedGoogle Scholar
  38. Liu H, Carvalhais L, Crawford M, Dang Y, Dennis P, Schenk P (2016a) Strategic tillage on a Grey vertosol after fifteen years of no-till management had no short-term impact on soil properties and agronomic productivity. Geoderma 267C:146–155. doi: 10.1016/j.geoderma.2016.01.002 CrossRefGoogle Scholar
  39. Liu H, Rincon-Florez V, Crawford M, Dang Y, Carvalhais L, Paul D, Schenk P (2016b) One-time strategic tillage does not cause major impacts on soil microbial properties in a no-till Calcisol. Soil Till Res:191–199 doi: 10.1016/j.still.2015.12.007
  40. Llewellyn RS, D’Emden F (2010) Adoption of no-till cropping practices in Australian grain growing regions. Australian Government, Grains Research and Development Corporation. http://www.grdc.com.au/uploads/documents/GRDC_adoption_of_no-till.pdf. Accessed 1 Dec 2016
  41. Logsdon SD (2013) Depth dependence of chisel plow tillage erosion. Soil Till Res 128:119–124. doi: 10.1016/j.still.2012.06.014 CrossRefGoogle Scholar
  42. López-Garrido R, Madejón E, Murillo JM, Moreno F (2011) Soil quality alteration by mouldboard ploughing in a commercial farm devoted to no-tillage under Mediterranean conditions. Agric Ecosyst Environ 140:182–190. doi: 10.1016/j.agee.2010.12.001 CrossRefGoogle Scholar
  43. Melero S, Panettieri M, Madejon E, Macpherson HG, Moreno F, Murillo J (2011) Implementation of chiselling and mouldboard ploughing in soil after 8 years of no-till management in SW, Spain: effect on soil quality. Soil Till Res 112:107–113. doi: 10.1016/j.still.2010.12.001 CrossRefGoogle Scholar
  44. Miura T, Niswati A, Swibawa IG et al (2015) Shifts in the composition and potential functions of soil microbial communities responding to a no-tillage practice and bagasse mulching on a sugarcane plantation. Biol and Fertil Soils 52:307–322. doi: 10.1007/s00374-015-1077-1 CrossRefGoogle Scholar
  45. Nagpure A, Choudhary B, Gupta RK (2014) Chitinases: in agriculture and human healthcare. Crit Rev Biotechnol 34:215–232. doi: 10.3109/07388551.2013.790874 CrossRefPubMedGoogle Scholar
  46. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670. doi: 10.1046/j.1351-0754.2003.0556.x CrossRefGoogle Scholar
  47. Naumoff DG, Dedysh SN (2012) Lateral gene transfer between the Bacteroidetes and Acidobacteria: The case of α-l-rhamnosidases. FEBS Lett 586:3843–3851. doi: 10.1016/j.febslet.2012.09.005 CrossRefPubMedGoogle Scholar
  48. Norton U, Bista P, Ghimire R, Norton JB (2014) US West: One-time summer tillage does not negate long-term benefits of no-till. Crops Soils mag 47:24–25, https://dl.sciencesocieties.org/publications/cns/pdfs/47/3/24. Accessed 1 Dec 2016Google Scholar
  49. Oorts K, Merckx R, Gréhan E, Labreuche J, Nicolardot B (2007) Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Till Res 95:133–148. doi: 10.1016/j.still.2006.12.002 CrossRefGoogle Scholar
  50. Philippot L, Piutti S, Martin-Laurent F, Hallet S, Germon JC (2002) Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl Environ Microbiol 68:6121–6128. doi: 10.1128/AEM.68.12.6121-6128.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Philippot L, Tscherko D, Bru D, Kandeler E (2011) Distribution of high bacterial taxa across the chronosequence of two alpine glacier forelands. Microb Ecol 61:303–312. doi: 10.1007/s00248-010-9754-y CrossRefPubMedGoogle Scholar
  52. Raper R (2002) The influence of implement type, tillage depth, and tillage timing on residue burial. Trans ASAE 45:1281–1286. doi: 10.13031/2013.11056 CrossRefGoogle Scholar
  53. Rincon-Florez VA, Dang YP, Crawford MH, Schenk PM, Carvalhais LC (2016) Occasional tillage has no effect on soil microbial biomass, activity and composition in Vertisols under long-term no-till. Biol Fertil Soils 52:191–202. doi: 10.1007/s00374-015-1066-4 CrossRefGoogle Scholar
  54. Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829. doi: 10.1128/AEM.68.8.3818-3829.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rotthauwe J-H, Witzel K-P, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712PubMedPubMedCentralGoogle Scholar
  56. Sait M, Davis KE, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857. doi: 10.1128/AEM.72.3.1852-1857.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sapkota T, Mazzoncini M, Bàrberi P, Antichi D, Silvestri N (2012) Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron Sustain Dev 32:853–863. doi: 10.1007/s13593-011-0079-0 CrossRefGoogle Scholar
  58. Schloter M, Dilly O, Munch J (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262. doi: 10.1016/S0167-8809(03)00085-9 CrossRefGoogle Scholar
  59. Sparling G, Pankhurst C, Doube B, Gupta V (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst CE (ed) Biological indicators of soil health. CAB International, Wallingford, pp 97–119Google Scholar
  60. Triplett G, Dick WA (2008) No-tillage crop production: a revolution in agriculture! Agron J 100:S-153–S-165. doi: 10.2134/agronj2007.0005c CrossRefGoogle Scholar
  61. Van Gestel M, Merckx R, Vlassak K (1993) Microbial biomass and activity in soils with fluctuating water contents. Geoderma 56:617–626. doi: 10.1016/0016-7061(93)90140-G CrossRefGoogle Scholar
  62. Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813. doi: 10.1016/j.soilbio.2007.10.015 CrossRefGoogle Scholar
  63. Walker S (2012) Capturing opportunities and overcoming obstacles in Australian agronomy. In: Yunusa I (ed). Proceedings of 16th Australian Agronomy Conference 2012, 14-18 October 2012, Armidale, NSW. http://www.regional.org.au/au/asa/2012/plenary/8550_walkersr.htm
  64. Wessén E, Hallin S, Philippot L (2010) Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management. Soil Biol Biochem 42:1759–1765. doi: 10.1016/j.soilbio.2010.06.013 CrossRefGoogle Scholar
  65. Wortmann C, Quincke J, Drijber R, Mamo M, Franti T (2008) Soil microbial community change and recovery after one-time tillage of continuous no-till. Agron J 100:1681–1686. doi: 10.2134/agronj2007.0317 CrossRefGoogle Scholar
  66. Wortmann CS, Drijber RA, Franti TG (2010) One-time tillage of no-till crop land five years post-tillage. Agron J 102:1302–1307. doi: 10.2134/agronj2010.0051 CrossRefGoogle Scholar
  67. Yan T, Fields MW, Wu L, Zu Y, Tiedje JM, Zhou J (2003) Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate‐and uranium‐contaminated groundwater. Environ Microbiol 5:13–24. doi: 10.1046/j.1462-2920.2003.00393.x CrossRefPubMedGoogle Scholar
  68. Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007) Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J 1:163–179. doi: 10.1038/ismej.2007.24 CrossRefPubMedGoogle Scholar
  69. Yu Y, Zhang J, Chen W, Zhong W, Zhu T, Cai Z (2014) Effect of land use on the denitrification, abundance of denitrifiers, and total nitrogen gas production in the subtropical region of China. Biol Fertil Soils 50:105–113. doi: 10.1007/s00374-013-0839-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hongwei Liu
    • 1
  • Lilia C. Carvalhais
    • 1
    • 2
  • Mark Crawford
    • 3
  • Yash P. Dang
    • 1
  • Paul G. Dennis
    • 1
  • Peer M. Schenk
    • 1
  1. 1.School of Agriculture and Food SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.Present address: Sugar Research AustraliaIndooroopillyAustralia
  3. 3.Department of Natural Resource and Mines (DNRM)ToowoombaAustralia

Personalised recommendations