Skip to main content

Advertisement

Log in

Interactive effects of temperature and moisture on CO2 and CH4 production in a paddy soil under long-term different fertilization regimes

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Temperature and moisture effects on organic carbon (C) decomposition (i.e., CO2 and CH4 emissions) determine the feedback of soil organic carbon (SOC) stocks in rice (Oryza sativa L.) paddies to climate change. In the present study, soils from a long-term (initiated in 1981) fertilization experiment [unfertilized control, combined inorganic nitrogen, phosphorus, and potassium fertilization (NPK), inorganic NPK plus organic manure (NPKM)] were incubated at 20 and 30 °C under both aerobic and anaerobic conditions. Relative to aerobic conditions, anaerobic conditions significantly reduced CO2 and total C release, but led to CH4 production. On average, the temperature sensitivity (Q 10) of CH4 production was 7.4 times greater than that of CO2 production. Under anaerobic conditions, the contribution rates of CH4 production to total C release significantly increased from an average of 2.4 % at 20 °C to 14.5 % at 30 °C, and to the global warming potential (GWP) from 18.1 to 59.9 %, respectively. Anaerobic conditions significantly reduced the Q 10 of CO2 and total C release, but increased that of GWP. Manure-amended soils showed higher CO2 and CH4 production on a per gram soil C basis and lower Q 10 of CO2 and total C production, but higher Q 10 of CH4 production than those of the control and NPK soils. Therefore, our results suggest that there are significant interactive effects of temperature, moisture, and fertilization regimes on SOC decomposition in the paddy soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banger K, Tian H, Lu C (2012) Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob Change Biol 18:3259–3267

    Article  Google Scholar 

  • Bi L, Zhang B, Liu G, Li Z, Liu Y, Ye C, Yu X, Lai T, Zhang J, Yin J, Liang Y (2009) Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric Ecosyst Environ 129:534–541

    Article  Google Scholar 

  • Billings SA, Iv FB (2013) How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob Change Biol 19:90–102

    Article  Google Scholar 

  • Blagodatskaya Е, Zheng X, Blagodatsky S, Wiegl R, Dannenmann M, Butterbach-Bahl K (2014) Oxygen and substrate availability interactively control the temperature sensitivity of CO2 and N2O emission from soil. Biol Fertil Soils 50:775–783

    Article  CAS  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  PubMed  Google Scholar 

  • Brown KH, Bach E, Drijber R, Hofmockel K, Jeske E, Sawyer JE, Castellano MJ (2014) A long-term nitrogen fertilizer gradient has little effect on soil organic matter in a high-intensity maize production system. Glob Change Biol 20:1339–1350

    Article  Google Scholar 

  • Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MU, Lavallee JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Wetterstedt JÅM, Bradford MA (2011) Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404

    Article  Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63

    Article  CAS  Google Scholar 

  • Das S, Adhya TK (2012) Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2 and temperature interaction. Soil Biol Biochem 47:36–45

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q 10. Glob Change Biol 12:154–164

    Article  Google Scholar 

  • Dong W, Zhang X, Wang H, Dai X, Sun X, Qiu W, Yang F (2012) Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS One 7, e44504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duc NT, Crill P, Bastviken D (2010) Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100:185–196

    Article  CAS  Google Scholar 

  • Elberling B, Michelsen A, Schädel C, Schuur EAG, Christiansen HH, Berg L, Tamstorf MP, Sigsgaard C (2013) Long-term CO2 production following permafrost thaw. Nat Clim Change 3:890–894

    Article  CAS  Google Scholar 

  • Fey A, Conrad R (2003) Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil. Soil Biol Biochem 35:1–8

    Article  CAS  Google Scholar 

  • Haddix M, Plante AF, Contant RT, Six J, Steinweg JM, Magrini-Bair K, Drijber RA, Morris SJ, Paul EA (2011) The role of soil characteristics on temperature sensitivity of soil organic matter. Soil Sci Soc Am J 75:56–68

    Article  CAS  Google Scholar 

  • Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T (2013) Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem 58:115–126

    Article  CAS  Google Scholar 

  • Hassan W, Bano R, Khatak BU, Hussain I, Yousaf M, David J (2015) Temperature sensitivity and soil organic carbon pools decomposition under different moisture regimes: effect on total microbial and enzymatic activity. Clean - Soil Air Water 43:391–398

    Article  CAS  Google Scholar 

  • Huang S, Sun Y, Zhang W (2012) Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: a meta-analysis. Clim Change 112:847–858

    Article  CAS  Google Scholar 

  • Huang S, Pan X, Guo J, Qian C, Zhang W (2014) Differences in soil organic carbon stocks and fraction distributions between rice paddies and upland cropping systems in China. J Soils Sediments 14:89–98

    Article  CAS  Google Scholar 

  • Inglett KS, Inglett PW, Reddy KR, Osborne TZ (2012) Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108:77–90

    Article  CAS  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 4–23

    Google Scholar 

  • IUSS (2006) World group, WRB. World reference base for soil resources 2006. World soil resources reports No. 103. FAO, Rome

    Google Scholar 

  • Jia X, Shao MA, Wei X, Li X (2014) Response of soil CO2 efflux to water addition in temperate semiarid grassland in northern China: the importance of water availability and species composition. Biol Fertil Soils 50:839–850

    Article  CAS  Google Scholar 

  • Karhu K, Fritze H, Hämäläinen K, Vanhala P, Jungner H, Oinonen M, Sonninen E, Tuomi M, Spetz P, Kitunen V, Liski J (2010) Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology 91:370–376

    Article  PubMed  Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Reddy CK, Padre AT, van Kessel C (2011) Role of nitrogen fertilization in sustaining organic matter in cultivated soils. J Environ Qual 40:1756–1766

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60:708–721

    Article  Google Scholar 

  • Leifeld J, von Lützow M (2014) Chemical and microbial activation energies of soil organic matter decomposition. Biol Fertil Soils 50:147–153

    Article  CAS  Google Scholar 

  • Liu Y, Zhang B, Li C, Hu F, Velde B (2008) Long-term fertilization influences on clay mineral composition and ammonium adsorption in a rice paddy soil. Soil Sci Soc Am J 72:1580–1590

    Article  CAS  Google Scholar 

  • Lu M, Zhou X, Luo Y, Yang Y, Fang C, Chen J, Li B (2011) Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric Ecosyst Environ 140:234–244

    Article  CAS  Google Scholar 

  • Lu Y, Fu L, Lu Y, Hugenholtz F, Ma K (2015) Effect of temperature on the structure and activity of a methanogenic archaeal community during rice straw decomposition. Soil Biol Biochem 81:17–27

    Article  CAS  Google Scholar 

  • Maillard É, Angers DA (2014) Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Change Biol 20:666–679

    Article  Google Scholar 

  • Menichetti L, Reyes Ortigoza AL, García N, Giagnoni L, Nannipieri P, Renella G (2015) Thermal sensitivity of enzyme activity in tropical soils assessed by the Q10 and equilibrium model. Biol Fertil Soils 51:299–310

    Article  CAS  Google Scholar 

  • Minasny B, McBratney AB, Hong SY, Sulaeman Y, Kim MS, Zhang YS, Kim YH, Han KH (2012) Continuous rice cropping has been sequestering carbon in soils in Java and South Korea for the past 30 years. Glob Biogeochem Cycles 26, GB3027. doi:10.1029/2012GB004406

    Article  Google Scholar 

  • Mohanty S, Nayak AK, Kumar A, Tripathi R, Shahid M, Bhattacharyya P, Raja R, Panda BB (2013) Carbon and nitrogen mineralization kinetics in soil of rice-rice system under long term application of chemical fertilizers and farmyard manure. Eur J Soil Biol 58:113–121

    Article  CAS  Google Scholar 

  • Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85

    Article  CAS  Google Scholar 

  • Noll M, Klose M, Conrad R (2010) Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil. FEMS Microbiol Ecol 73:215–225

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Xu X, Smith P, Pan W, Lal R (2010) An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agric Ecosyst Environ 136:133–138

    Article  Google Scholar 

  • Plante AF, Fernández JM, Haddix ML, Haddix ML, Steinweg JM, Conant RT (2011) Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biol Biochem 43:1051–1058

    Article  CAS  Google Scholar 

  • Qin Z, Huang Y, Zhuang Q (2013) Soil organic carbon sequestration potential of cropland in China. Glob Biogeochem Cycles 27:711–722

    Article  CAS  Google Scholar 

  • Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5:81–91

    Article  CAS  Google Scholar 

  • Sun Y, Huang S, Yu X, Zhang W (2013) Stability and saturation of soil organic carbon in rice fields: evidence from a long-term fertilization experiment in subtropical China. J Soils Sediments 13:1327–1334

    Article  CAS  Google Scholar 

  • Sun Y, Huang S, Yu X, Zhang W (2015) Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China. Plant Soil. doi:10.1007/s11104-015-2611-5 (online first)

    Google Scholar 

  • Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Change Biol 18:336–348

    Article  Google Scholar 

  • Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S (2014) Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob Change Biol 20:2674–2686

    Article  CAS  Google Scholar 

  • von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  • Xie BH, Zheng XH, Zhou ZX, Zhu B, Chen X, Shi Y, Wang YY, Zhao ZC, Liu CY, Yao ZS, Zhu JG (2010) Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant Soil 326:393–401

    Article  CAS  Google Scholar 

  • Xue Y, Duan H, Liu L, Wang Z, Yang J, Zhang J (2013) An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci 53:271–284

    Article  Google Scholar 

  • Yan X, Akiyama H, Yagi K, Akimoto H (2009) Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Glob Biogeochem Cycles 23, GB2002. doi:10.1029/2008GB003299

    Article  Google Scholar 

  • Yan X, Zhou H, Zhu Q, Wang X, Zhang Y, Yu X, Peng X (2013) Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res 130:42–51

    Article  Google Scholar 

  • Yu H, Ding W, Luo J, Geng R, Ghani A, Cai Z (2012) Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol Fertil Soils 48:325–336

    Article  CAS  Google Scholar 

  • Zheng J, Zhang X, Li L, Zhang P, Pan G (2007) Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agric Ecosyst Environ 120:129–138

    Article  CAS  Google Scholar 

  • Zheng J, Li L, Pan G, Zhang X, Smith P, Hussain Q (2012) Potential aerobic C mineralization of a red earth paddy soil and its temperature dependence under long-term fertilizer treatments. Soil Use Manage 28:185–193

    Article  CAS  Google Scholar 

  • Zhou P, Li Y, Ren X, Xiao H, Tong C, Ge T, Brookes PC, Shen J, Wu J (2014) Organic carbon mineralization responses to temperature increases in subtropical paddy soils. J Soils Sediments 14:1–9

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31460336), the Special Fund for Agro-scientific Research in the Public Interest of China (201503122, 201503118), the Foundation of Jiangxi Province (20151BBF60082), and the Innovation Program of Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijian Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 215 kb)

Fig. S2

(DOC 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Sun, Y., Yu, X. et al. Interactive effects of temperature and moisture on CO2 and CH4 production in a paddy soil under long-term different fertilization regimes. Biol Fertil Soils 52, 285–294 (2016). https://doi.org/10.1007/s00374-015-1075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1075-3

Keywords

Navigation