Biology and Fertility of Soils

, Volume 52, Issue 2, pp 243–250 | Cite as

Fungal bioaugmentation of two rice husk-based biomixtures for the removal of carbofuran in on-farm biopurification systems

  • Kattia Madrigal-Zúñiga
  • Karla Ruiz-Hidalgo
  • Juan Salvador Chin-Pampillo
  • Mario Masís-Mora
  • Víctor Castro-Gutiérrez
  • Carlos E. Rodríguez-Rodríguez
Original Paper


The ligninolytic fungus Trametes versicolor was employed in the bioaugmentation of compost- (GCS) and peat-based (GTS) biomixtures for the removal of the insecticide-nematicide carbofuran (CFN). Among several lignocellulosic substrates, fungal colonization was best supported in rice husk, and this pre-colonized substrate was used to prepare the biomixtures. Estimated half-lives for CFN were 3.4 and 8.1 days in the GTS and GCS biomixtures, respectively. The CFN transformation products 3-hydroxycarbofuran and 3-ketocarbofuran were detected at the moment of CFN application, but their concentration continuously decreased to complete removal in both biomixtures. Mineralization of 14C-radiolabeled CFN was faster in GTS (k = 0.00248 day−1) than in GCS (k = 0.00188 day−1). Complete elimination of the toxicity in the matrices was demonstrated after 48 days. Overall data suggest that the bioaugmentation improved the performance of the GTS rather than the GCS biomixture.


Biopurification system Bioaugmentation Degradation Pesticides Fungi Toxicity 



The authors acknowledge Vicerrectoría de Investigación, Universidad de Costa Rica (projects 802-B2-046, 802-B4-503 and 802-B4-609), the Costa Rican Ministry of Science, Technology and Telecommunications, MICITT (project FI-093-13), and the Joint FAO/IAEA project TC COS5/029 for supporting this work.


  1. Asgher M, Bhati HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783CrossRefPubMedGoogle Scholar
  2. Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63CrossRefPubMedGoogle Scholar
  3. Botterweck J, Schmidt B, Schwazbauer J, Kalathoor R, Schäffer A (2014) Enhanced non-extractable residue formation of 14C-metalaxyl catalyzed by an immobilized laccase. Biol Fertil Soils 50:1015–1024CrossRefGoogle Scholar
  4. Castillo MP, Torstensson L (2007) Effect of biobed composition moisture, and temperature on the degradation of pesticides. J Agric Food Chem 55:5725–5733CrossRefGoogle Scholar
  5. Castillo MP, Torstensson L, Stenström J (2008) Biobeds for environmental protection from pesticide use – A review. J Agric Food Chem 56:6206–6219CrossRefGoogle Scholar
  6. Chin-Pampillo JS, Carazo-Rojas E, Pérez-Rojas G, Castro-Gutiérrez V, Rodríguez-Rodríguez CE (2015a) Accelerated biodegradation of selected nematicides in tropical crop soils from Costa Rica. Environ Sci Pollut Res 22:1240–1249CrossRefGoogle Scholar
  7. Chin-Pampillo JS, Ruiz-Hidalgo K, Masís-Mora M, Carazo-Rojas E, Rodríguez-Rodríguez CE (2015b) Adaptation of biomixtures for carbofuran degradation in on-farm biopurification systems in tropical regions. Environ Sci Pollut Res 22:9839–9848CrossRefGoogle Scholar
  8. Coppola L, Castillo MP, Monaci E, Vischetti C (2007) Adaptation of the biobed composition for chlorpyrifos degradation to Southern Europe conditions. J Agric Food Chem 55:396–401CrossRefPubMedGoogle Scholar
  9. Coppola L, Castillo MP, Vischetti C (2011) Degradation of isoproturon and bentazone in peat- and compost-based biomixtures. Pest Manag Sci 67:107–113CrossRefPubMedGoogle Scholar
  10. Cruz-Morató C, Rodríguez-Rodríguez CE, Marco-Urrea E, Sarrà M, Caminal G, Vicent T, Jelić A, García-Galán MJ, Pérez S, Díaz-Cruz MS, Petrović M, Barceló D (2013) Biodegradation of pharmaceuticals by fungi and metabolites identification. In: Vicent T, Caminal G, Eljarrat E, Barceló D (eds) Emerging organic contaminants in sludges: analysis, fate and biological treatment, Hdb Env Chem. Springer-Verlag, Berlin, pp 165–213Google Scholar
  11. Doddapaneni H, Yadav JS (2004) Differential regulation and xenobiotic induction of tandem P450 monooxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 65:559–565PubMedGoogle Scholar
  12. Eggert C, Temp U, Eriksson KEL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158PubMedCentralPubMedGoogle Scholar
  13. EPA (2001) EPA-823-B-01-002 methods for collection, storage and manipulation of sediments for chemical and toxicological analyses: technical manual. Office of Water (4305), Washington, DCGoogle Scholar
  14. EPA (2002) EPA-821-R-02-012 methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Office of Water (4303T), Washington, DCGoogle Scholar
  15. Font Segura X, Gabarrell Durany X, Ramos Lozano D, Vicent Huguet T (1993) Detoxification pretreatment of black liquor derived from non-wood feedstock with white-rot fungi. Environ Technol 14:681–687CrossRefGoogle Scholar
  16. Gao W, Liang J, Pizzul L, Feng XM, Zhang K, Castillo MP (2015) Evaluation of spent mushroom substrate as substitute of peat in Chinese biobeds. Int Biodeterior Biodegrad 98:107–112CrossRefGoogle Scholar
  17. Gupta RC (1994) Carbofuran toxicity. J Toxicol Environ Health 43:383–418CrossRefPubMedGoogle Scholar
  18. Kaal EEJ, de Jong ED, Field JA (1993) Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white rot fungus Bjerkandera sp. strain BOS55. Appl Environ Microbiol 59:4031–4036PubMedCentralPubMedGoogle Scholar
  19. Kravvariti K, Tsiropoulos NG, Karpouzas DG (2010) Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Manag Sci 66:1122–1128CrossRefPubMedGoogle Scholar
  20. McErlean C, Marchant R, Banat IM (2006) An evaluation of soil colonization potential of selected fungi and their production of lingninolytic enzymes for use in soil bioremediation applications. Anton Leeuw J Microbiol 90:147–158CrossRefGoogle Scholar
  21. Mir-Tutusaus JA, Masís-Mora M, Corcellas C, Eljarrat E, Barceló D, Sarrà M, Caminal G, Vicent T, Rodríguez-Rodríguez CE (2014) Degradation of selected agrochemicals by the white-rot fungus Trametes versicolor. Sci Total Environ 500–501:235–242CrossRefPubMedGoogle Scholar
  22. Otieno PO, Lalah JO, Virani M, Jondiko IO, Schramm KW (2010) Soil and water contamination with carbofuran residues in agricultural farm lands in Kenya following the application of the technical formulation Furadan. J Environ Sci Health B 45:137–144CrossRefPubMedGoogle Scholar
  23. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33CrossRefPubMedGoogle Scholar
  24. Rodríguez-Rodríguez CE, Marco-Urrea E, Caminal G (2010) Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresour Technol 101:2259–2266CrossRefPubMedGoogle Scholar
  25. Rodríguez-Rodríguez CE, Barón E, Gago-Ferrero P, Jelić A, Llorca M, Farré M, Díaz-Cruz S, Eljarrat E, Petrović M, Caminal G, Barceló D, Vicent T (2012a) Removal of pharmaceuticals, polybrominated flame retardants and UV filters from sludge by the fungus Trametes versicolor in bioslurry reactor. J Hazard Mater 233–234:235–243CrossRefPubMedGoogle Scholar
  26. Rodríguez-Rodríguez CE, Jelić A, Pereira MA, Sousa DZ, Petrović M, Alves MM, Barceló D, Caminal G, Vicent T (2012b) Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities. Environ Sci Technol 46:12012–12020CrossRefPubMedGoogle Scholar
  27. Rodríguez-Rodríguez CE, Castro-Gutiérrez V, Chin-Pampillo JS, Ruiz-Hidalgo K (2013) On-farm biopurification systems: role of white rot fungi in depuration of pesticide containing wastewaters. FEMS Microbiol Lett 345:1–12CrossRefPubMedGoogle Scholar
  28. Rodríguez-Rodríguez CE, Lucas D, Barón E, Gago-Ferrero P, Molins-Delgado D, Rodríguez-Mozaz S, Eljarrat E, Díaz-Cruz MS, Barceló D, Caminal G, Vicent T (2014) Re-inoculation strategies enhance the degradation of emerging pollutants by fungal bioaugmentation in sewage sludge. Bioresour Technol 168:180–189CrossRefPubMedGoogle Scholar
  29. Ruiz-Hidalgo K, Chin-Pampillo JS, Masís-Mora M, Carazo E, Rodríguez-Rodríguez CE (2014) Degradation of carbofuran by Trametes versicolor in rice husk as a potential lignocellulosic substrate for biomixtures: from mineralization to toxicity reduction. Process Biochem 49:2266–2271CrossRefGoogle Scholar
  30. Tavares APM, Coelho MAZ, Agapito MSM, Coutinho JAP, Xavier AMRB (2006) Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Appl Biochem Biotechnol 134:233–248CrossRefPubMedGoogle Scholar
  31. Torstensson L, Castillo MP (1997) Use of biobeds in Sweden to minimize environmental spillages from agricultural spraying equipment. Pest Outlook 8:24–27Google Scholar
  32. Tuomela M, Lyytikäinen M, Oivanen P, Hatakka A (1998) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol Biochem 31:65–74CrossRefGoogle Scholar
  33. Urrutia C, Rubilar O, Tortella GR, Diez MC (2013) Degradation of pesticide mixture on modified matrix of a biopurification system with alternatives lignocellulosic wastes. Chemosphere 92:1361–1366CrossRefPubMedGoogle Scholar
  34. Verhagen P, De Gelder L, Boon N (2013) Inoculation with a mixed degrading culture improves the pesticide removal of an on-farm biopurification system. Curr Microbiol 67:466–471CrossRefPubMedGoogle Scholar
  35. Vischetti C, Monaci E, Cardinali A, Casucci C, Perucci P (2008) The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere 72:1739–1743CrossRefPubMedGoogle Scholar
  36. von Wirén-Lehr S, Castillo M, Torstensson L, Scheunert I (2001) Degradation of isoproturon in biobeds. Biol Fertil Soils 33:535–540CrossRefGoogle Scholar
  37. Wariishi H, Valli K, Gold MH (1992) Manganese (II) oxidation by manganese peroxidase from basidiomycete Phanerochaete chrysosporium. J Biol Chem 267:23688–23695PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kattia Madrigal-Zúñiga
    • 1
  • Karla Ruiz-Hidalgo
    • 1
  • Juan Salvador Chin-Pampillo
    • 1
  • Mario Masís-Mora
    • 1
  • Víctor Castro-Gutiérrez
    • 1
  • Carlos E. Rodríguez-Rodríguez
    • 1
  1. 1.Centro de Investigación en Contaminación Ambiental (CICA)Universidad de Costa RicaSan JoséCosta Rica

Personalised recommendations