Occasional tillage has no effect on soil microbial biomass, activity and composition in Vertisols under long-term no-till

Abstract

Heavy rains in recent years have triggered an increase in herbicide-resistant weeds and crop diseases in long-term no-till (NT) farming systems in Queensland, Australia. As a possible solution, occasional or strategic tillage (ST) has been applied during summer fallow in two farms located near Jimbour and Biloela, Queensland, Australia. We investigated the impact of different frequencies (one to three passes) and timings (December, January and March) of tillage imposition on microbial indicators of soil health. Tillage implements included chisel plow sweeps at the Biloela site and narrow chisel point and offset disc at the Jimbour site. Seven soil samples were collected from each plot in April 2013 at 17, 10 and 2 weeks post-ST from 0 to 0.1 and 0.1 to 0.2 m depths and composited separately for each soil depth. Samples were analysed for microbial biomass C, enzyme activity, community-level physiological profiling (CLPP) via microrespirometry method and bacterial genetic fingerprinting. Overall, there were no significant differences for any of these parameters between NT and ST at both sites. However, irrespective of tillage treatments, significant differences between soil depths were found for enzyme activity (Biloela), substrate utilisation (Jimbour and Biloela) and bacterial genetic fingerprinting (Jimbour). There were no major effects of ST on the microbial indicators used either under different timings, frequencies or type of tillage implement. Therefore, ST with chisel plow sweeps, narrow chisel point and offset disc may be undertaken with minimal impact on soil microbial communities to combat problems associated with long-term NT Vertisols, such as weed and soil-borne disease outbreak in Queensland, Australia.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. ABS (2009) Land management and farming in Queensland, 2007–08. Australian Bureau of statistics

  2. Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951. doi:10.1016/S0038-0717(00)00244-3

    Article  CAS  Google Scholar 

  3. Adu J, Oades J (1978) Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biol Biochem 10:109–115. doi:10.1016/0038-0717(78)90080-9

    Article  CAS  Google Scholar 

  4. Babujia L, Hungria M, Franchini J, Brookes P (2010) Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage. Soil Biol Biochem 42:2174–2181. doi:10.1016/j.soilbio.2010.08.013

    Article  CAS  Google Scholar 

  5. Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38:15–20. doi:10.1007/s00374-003-0590-9

    Article  Google Scholar 

  6. Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479. doi:10.1016/S0038-0717(99)00051-6

    Article  CAS  Google Scholar 

  7. Banu NA, Singh B, Copeland L (2006) Microbial biomass and microbial diversity in some soils from New South Wales, Australia. Aust J Soil Res 42:777–782. doi:10.1071/SR03132

    Article  Google Scholar 

  8. Bausenwein U, Gattinger A, Langer U, Embacher A, Hartmann H-P, Sommer M, Munch J, Schloter M (2008) Exploring soil microbial communities and soil organic matter: variability and interactions in arable soils under minimum tillage practice. Appl Soil Ecol 40:67–77. doi:10.1016/j.apsoil.2008.03.006

    Article  Google Scholar 

  9. Beare M, Hendrix P, Cabrera M, Coleman D (1994) Aggregate-protected and unprotected organic matter pools in conventional-and no-tillage soils. Soil Sci Soc Am J 58:787–795. doi:10.2136/sssaj1994.03615995005800030021x

    Article  Google Scholar 

  10. Beck T, Joergensen R, Kandeler E, Makeschin F, Nuss E, Oberholzer H, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032. doi:10.1016/S0038-0717(97)00030-8

    Article  CAS  Google Scholar 

  11. Bell M, Seymour N, Stirling G, Stirling A, Van Zwieten L, Vancov T, Sutton G, Moody P (2006) Impacts of management on soil biota in vertosols supporting the broadacre grains industry in northern Australia. Aust J Soil Res 44:433–451. doi:10.1071/SR05137

    Article  Google Scholar 

  12. Blokhuis WA, Kooistra MJ, Wilding LP (1990) Micromorphology of cracking clayey soils (vertisols). Dev Soil Sci 19:123–148. doi:10.1016/S0166-2481(08)70323-4

    Article  Google Scholar 

  13. Brockett BF, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20. doi:10.1016/j.soilbio.2011.09.003

    Article  CAS  Google Scholar 

  14. Brookes P (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279. doi:10.1007/BF00336094

    Article  CAS  Google Scholar 

  15. Campbell CA, Janzen HH, Juma NG (1997) Case studies of soil quality in the Canadian prairies: long-term field experiments. Dev Soil Sci 25:351–398

    Article  Google Scholar 

  16. Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599. doi:10.1128/AEM.69.6.3593-3599.2003

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  17. Carter MR (1986) Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Res 7:29–40. doi:10.1016/0167-1987(86)90005-X

    Article  Google Scholar 

  18. Ceja-Navarro JA, Rivera-Orduna FN, Patino-Zúniga L, Vila-Sanjurjo A, Crossa J, Govaerts B, Dendooven L (2010) Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl Environ Microbiol 76:3685–3691. doi:10.1128/AEM.02726-09

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  19. Chaer G, Fernandes M, Myrold D, Bottomley P (2009) Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microb Ecol 58:414–424. doi:10.1007/s00248-009-9508-x

    Article  CAS  PubMed  Google Scholar 

  20. Crawford M, Rincon-Florez V, Balzer A, Dang Y, Carvalhais L, Liu H, Schenk P (2015) Changes in the soil quality attributes of continuous no-till farming systems following a strategic tillage. Soil Res 53:263–273. doi:10.1071/SR14216

    Article  Google Scholar 

  21. Dalal R, Chan K (2001) Soil organic matter in rainfed cropping systems of the Australian cereal belt. Aust J Soil Res 39:435–464. doi:10.1071/SR99042

    Article  CAS  Google Scholar 

  22. Dalal RC, Henderson PA, Glasby JM (1991) Organic matter and microbial biomass in a vertisol after 20 years of zero-tillage. Soil Biol Biochem 23:435–441. doi:10.1016/0038-0717(91)90006-6

    Article  CAS  Google Scholar 

  23. Dalal R, Strong W, Weston E, Cooper J, Lehane K, King A, Gaffney J (1994) Evaluation of forage and grain legumes, no-till and fertilisers to restore fertility degraded soils. Trans Int Soc Soil Sci 5a:62–74

    Google Scholar 

  24. Dang YP, Routley R, McDonald M, Dala R, Singh D, Orange D, Mann M (2006) Subsoil constraints in vertosols: crop water use, nutrient concentration, and grain yields of bread wheat, durum wheat, barley, chickpea, and canola. Aust J Agric Res 57:983–998. doi:10.1071/AR05268

    Article  CAS  Google Scholar 

  25. Dang YP, Moody PW, Bell MJ, Seymour NP, Dalal RC, Freebairn DM, Walker SR (2015a) Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions:II. Implications for agronomy, soil and environment. Soil Tillage Res 152:115–123. doi:10.1016/j.still.2014.12.013

    Article  Google Scholar 

  26. Dang YP, Seymour NP, Walker SR, Bell MJ, Freebairn DM (2015b) Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: I. Drivers and implementation. Soil Tillage Res. doi:10.1016/j.still.2015.03.009

    Google Scholar 

  27. Delmont TO, Francioli D, Jacquesson S, Laoudi S, Mathieu A, Nesme J, Ceccherini MT, Nannipieri P, Simonet P, Vogel TM (2014) Microbial community development and unseen diversity recovery in inoculated sterile soil. Biol Fertil Soils 50:1069–1076. doi:10.1007/s00374-014-0925-8

    Article  CAS  Google Scholar 

  28. Drees L, Wilding L, Karathanasis A, Blevins R (1994) Micromorphological characteristics of long-term no-till and conventionally tilled soils. Soil Sci Soc Am J 58:508–517. doi:10.2136/sssaj1994.03615995005800020037x

    Article  Google Scholar 

  29. Fierer N, Schimel JP (2002) Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787. doi:10.1016/S0038-0717(02)00007-X

    Article  CAS  Google Scholar 

  30. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167176. doi:10.1016/S0038-0717(02)00251-1

    Article  Google Scholar 

  31. González-Prieto S, Díaz-Raviña M, Martín A, López-Fando C (2013) Effects of agricultural management on chemical and biochemical properties of a semiarid soil from central Spain. Soil Tillage Res 134:49–55. doi:10.1016/j.still.2013.07.007

    Article  Google Scholar 

  32. Gonzalez-Quiñones V, Stockdale E, Banning N, Hoyle F, Sawada Y, Wherrett A, Jones D, Murphy D (2011) Soil microbial biomass—interpretation and consideration for soil monitoring. Soil Res 49:287–304. doi:10.1071/SR10203

    Article  Google Scholar 

  33. Green V, Stott D, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701. doi:10.1016/j.soilbio.2005.06.020

    Article  CAS  Google Scholar 

  34. Green V, Stott D, Cruz J, Curi N (2007) Tillage impacts on soil biological activity and aggregation in a Brazilian cerrado oxisol. Soil Tillage Res 92:114–121. doi:10.1016/j.still.2006.01.004

    Article  Google Scholar 

  35. Gregory AS, Watts CW, Griffiths BS, Hallett PD, Kuan HL, Whitmore AP (2009) The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma 153:172–185. doi:10.1016/j.geoderma.2009.08.002

    Article  Google Scholar 

  36. Griffiths B, Hallett P, Kuan H, Gregory A, Watts C, Whitmore A (2008) Functional resilience of soil microbial communities depends on both soil structure and microbial community composition. Biol Fertil Soils 44:745–754. doi:10.1007/s00374-007-0257-z

    Article  Google Scholar 

  37. Hassing J (1995) Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biol Biochem 27:1099–1108. doi:10.1016/0038-0717(95)00027-C

    Article  Google Scholar 

  38. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  39. IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  40. Jackson L, Calderon F, Steenwerth K, Scow K, Rolston D (2003) Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma 114:305–317. doi:10.1016/S0016-7061(03)00046-6

    Article  CAS  Google Scholar 

  41. Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN, (Ed) Soil Biochem 5:230–257

  42. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415. doi:10.1016/j.soilbio.2008.05.021

    Article  CAS  Google Scholar 

  43. Liu Z, Zhou W, Shen J, Li S, Ai C (2014) Soil quality assessment of yellow clayey paddy soils with different productivity. Biol Fertil Soils 50:537–548. doi:10.1007/s00374-013-0864-9:

    Article  Google Scholar 

  44. Martens R (1995) Current methods for measuring microbial biomass C in soil: potentials and limitations. Biol Fertil Soils 19:87–99. doi:10.1007/BF00336142

    Article  CAS  Google Scholar 

  45. Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick R (eds) Enzymes in the environment. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  46. Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762. doi:10.1007/s00374-012-0723-0

    Article  Google Scholar 

  47. Nicolardot B, Fauvet G, Cheneby D (1994) Carbon and nitrogen cycling through soil microbial biomass at various temperatures. Soil Biol Biochem 26:253–261. doi:10.1016/0038-0717(94)90165-1

    Article  CAS  Google Scholar 

  48. Rincon-Florez VA, Carvalhais LC, Schenk PM (2013) Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5:581–612. doi:10.3390/d5030581

    Article  Google Scholar 

  49. Roberts W, Chan K (1990) Tillage-induced increases in carbon dioxide loss from soil. Soil Tillage Res 17:143–151. doi:10.1016/0167-1987(90)90012-3

    Article  Google Scholar 

  50. Robertson L, Kettle B, Simpson G (1994) The influence of tillage practices on soil macrofauna in a semi-arid agroecosystem in northeastern Australia. Agric Ecosyst Environ 48:149–156. doi:10.1016/0167-8809(94)90085-X

    Article  Google Scholar 

  51. Rousk J, Brookes PC, Baath E (2010) Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem 42:926–934. doi:10.1016/j.soilbio.2010.02.009

    Article  CAS  Google Scholar 

  52. Saffigna P, Powlson D, Brookes P, Thomas G (1989) Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian vertisol. Soil Biol Biochem 21:759–765. doi:10.1016/0038-0717(89)90167-3

    Article  Google Scholar 

  53. Schloter M, Dilly O, Munch J (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262. doi:10.1016/S0167-8809(03)00085-9

    Article  Google Scholar 

  54. Shipitalo M, Protz R (1987) Comparison of morphology and porosity of a soil under conventional and zero tillage. Can J Soil Sci 67:445–456. doi:10.4141/cjss87-043

    Article  Google Scholar 

  55. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176. doi:10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  56. Smith R, Tongway D, Tighe M, Reid N (2015) When does organic carbon induce aggregate stability in vertosols? Agric Ecosyst Environ 201:92–100

    Article  Google Scholar 

  57. Sun B, Hallett PD, Caul S, Daniell TJ, Hopkins DW (2011) Distribution of soil carbon and microbial biomass in arable soils under different tillage regimes. Plant Soil 338:17–25. doi:10.1007/s11104-010-0459-2

    Article  CAS  Google Scholar 

  58. Thomas G, Titmarsh G, Freebairn D, Radford B (2007) No-tillage and conservation farming practices in grain growing areas of Queensland—a review of 40 years of development. Anim Prod Sci 47:887–898. doi:10.1071/EA06204

    Article  Google Scholar 

  59. Trasar-Cepeda C, Leiros C, Gil-Sotres F, Seoane S (1997) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26:100–106. doi:10.1007/s003740050350

    Article  Google Scholar 

  60. Unger P (1990) Conservation tillage systems. Adv Soil Sci 13:27–68

    Article  Google Scholar 

  61. Van Gestel M, Ladd J, Amato M (1992) Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles. Soil Biol Biochem 24:103–111. doi:10.1016/0038-0717(92)90265-Y

    Article  Google Scholar 

  62. Van Gestel M, Merckx R, Vlassak K (1993) Microbial biomass and activity in soils with fluctuating water contents. Geoderma 56:617–626. doi:10.1016/0016-7061(93)90140-G

    Article  Google Scholar 

  63. Wakelin S, Macdonald L, Rogers S, Gregg AL, Bolger T, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813. doi:10.1016/j.soilbio.2007.10.015

    Article  CAS  Google Scholar 

  64. Wortmann C, Quincke J, Drijber R, Mamo M, Franti T (2008) Soil microbial community change and recovery after one-time tillage of continuous no-till. Agron J 100:1681–1686. doi:10.2134/agronj2007.0317

    Article  Google Scholar 

  65. Wortmann C, Drijber R, Franti T (2010) One-time tillage of no-till crop land 5 years post-tillage. Agron J 102:1302–1307. doi:10.2134/agronj2010.0051

    Article  Google Scholar 

  66. Young I, Ritz K (2000) Tillage, habitat space and function of soil microbes. Soil Tillage Res 53:201–213. doi:10.1016/S0167-1987(99)00106-3

    Article  Google Scholar 

  67. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108. doi:10.1016/0038-0717(94)90131-7

    Article  Google Scholar 

  68. Zogg GP, Zak DR, Ringelberg DB, White DC, MacDonald NW, Pregitzer KS (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481. doi:10.2136/sssaj1997.03615995006100020015x

    Article  CAS  Google Scholar 

  69. Zumteg A, Luster J, Göransson H, Smittenberg RH, Brunner I, Bernasconi SM, Zeyer J, Frey B (2012) Bacterial, archaeal and fungal sucession in the forestfield of a receding glacier. Microb Ecol 63:552–564. doi:10.1007/s002482-011-9991-8

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Grain Research and Development Corporation (GRDC) for financial support (ERM00003) and Clement Ng, Susann Aue, Falk Stürmann and Anna Balzer for assistance during the fieldwork.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lilia C. Carvalhais.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rincon-Florez, V.A., Dang, Y.P., Crawford, M.H. et al. Occasional tillage has no effect on soil microbial biomass, activity and composition in Vertisols under long-term no-till. Biol Fertil Soils 52, 191–202 (2016). https://doi.org/10.1007/s00374-015-1066-4

Download citation

Keywords

  • Soil quality
  • Soil bio-indicators
  • Fluorescein diacetate hydrolysis
  • Terminal restriction fragment analysis (T-RFLP)
  • Substrate-induced respiration
  • Metabolic diversity