Advertisement

Biology and Fertility of Soils

, Volume 52, Issue 2, pp 191–202 | Cite as

Occasional tillage has no effect on soil microbial biomass, activity and composition in Vertisols under long-term no-till

  • Vivian A. Rincon-Florez
  • Yash P. Dang
  • Mark H. Crawford
  • Peer M. Schenk
  • Lilia C. Carvalhais
Original Paper

Abstract

Heavy rains in recent years have triggered an increase in herbicide-resistant weeds and crop diseases in long-term no-till (NT) farming systems in Queensland, Australia. As a possible solution, occasional or strategic tillage (ST) has been applied during summer fallow in two farms located near Jimbour and Biloela, Queensland, Australia. We investigated the impact of different frequencies (one to three passes) and timings (December, January and March) of tillage imposition on microbial indicators of soil health. Tillage implements included chisel plow sweeps at the Biloela site and narrow chisel point and offset disc at the Jimbour site. Seven soil samples were collected from each plot in April 2013 at 17, 10 and 2 weeks post-ST from 0 to 0.1 and 0.1 to 0.2 m depths and composited separately for each soil depth. Samples were analysed for microbial biomass C, enzyme activity, community-level physiological profiling (CLPP) via microrespirometry method and bacterial genetic fingerprinting. Overall, there were no significant differences for any of these parameters between NT and ST at both sites. However, irrespective of tillage treatments, significant differences between soil depths were found for enzyme activity (Biloela), substrate utilisation (Jimbour and Biloela) and bacterial genetic fingerprinting (Jimbour). There were no major effects of ST on the microbial indicators used either under different timings, frequencies or type of tillage implement. Therefore, ST with chisel plow sweeps, narrow chisel point and offset disc may be undertaken with minimal impact on soil microbial communities to combat problems associated with long-term NT Vertisols, such as weed and soil-borne disease outbreak in Queensland, Australia.

Keywords

Soil quality Soil bio-indicators Fluorescein diacetate hydrolysis Terminal restriction fragment analysis (T-RFLP) Substrate-induced respiration Metabolic diversity 

Notes

Acknowledgments

We wish to thank Grain Research and Development Corporation (GRDC) for financial support (ERM00003) and Clement Ng, Susann Aue, Falk Stürmann and Anna Balzer for assistance during the fieldwork.

References

  1. ABS (2009) Land management and farming in Queensland, 2007–08. Australian Bureau of statisticsGoogle Scholar
  2. Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951. doi: 10.1016/S0038-0717(00)00244-3 CrossRefGoogle Scholar
  3. Adu J, Oades J (1978) Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biol Biochem 10:109–115. doi: 10.1016/0038-0717(78)90080-9 CrossRefGoogle Scholar
  4. Babujia L, Hungria M, Franchini J, Brookes P (2010) Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage. Soil Biol Biochem 42:2174–2181. doi: 10.1016/j.soilbio.2010.08.013 CrossRefGoogle Scholar
  5. Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38:15–20. doi: 10.1007/s00374-003-0590-9 CrossRefGoogle Scholar
  6. Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479. doi: 10.1016/S0038-0717(99)00051-6 CrossRefGoogle Scholar
  7. Banu NA, Singh B, Copeland L (2006) Microbial biomass and microbial diversity in some soils from New South Wales, Australia. Aust J Soil Res 42:777–782. doi: 10.1071/SR03132 CrossRefGoogle Scholar
  8. Bausenwein U, Gattinger A, Langer U, Embacher A, Hartmann H-P, Sommer M, Munch J, Schloter M (2008) Exploring soil microbial communities and soil organic matter: variability and interactions in arable soils under minimum tillage practice. Appl Soil Ecol 40:67–77. doi: 10.1016/j.apsoil.2008.03.006 CrossRefGoogle Scholar
  9. Beare M, Hendrix P, Cabrera M, Coleman D (1994) Aggregate-protected and unprotected organic matter pools in conventional-and no-tillage soils. Soil Sci Soc Am J 58:787–795. doi: 10.2136/sssaj1994.03615995005800030021x CrossRefGoogle Scholar
  10. Beck T, Joergensen R, Kandeler E, Makeschin F, Nuss E, Oberholzer H, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032. doi: 10.1016/S0038-0717(97)00030-8 CrossRefGoogle Scholar
  11. Bell M, Seymour N, Stirling G, Stirling A, Van Zwieten L, Vancov T, Sutton G, Moody P (2006) Impacts of management on soil biota in vertosols supporting the broadacre grains industry in northern Australia. Aust J Soil Res 44:433–451. doi: 10.1071/SR05137 CrossRefGoogle Scholar
  12. Blokhuis WA, Kooistra MJ, Wilding LP (1990) Micromorphology of cracking clayey soils (vertisols). Dev Soil Sci 19:123–148. doi: 10.1016/S0166-2481(08)70323-4 CrossRefGoogle Scholar
  13. Brockett BF, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20. doi: 10.1016/j.soilbio.2011.09.003 CrossRefGoogle Scholar
  14. Brookes P (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279. doi: 10.1007/BF00336094 CrossRefGoogle Scholar
  15. Campbell CA, Janzen HH, Juma NG (1997) Case studies of soil quality in the Canadian prairies: long-term field experiments. Dev Soil Sci 25:351–398CrossRefGoogle Scholar
  16. Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599. doi: 10.1128/AEM.69.6.3593-3599.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Carter MR (1986) Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Res 7:29–40. doi: 10.1016/0167-1987(86)90005-X CrossRefGoogle Scholar
  18. Ceja-Navarro JA, Rivera-Orduna FN, Patino-Zúniga L, Vila-Sanjurjo A, Crossa J, Govaerts B, Dendooven L (2010) Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl Environ Microbiol 76:3685–3691. doi: 10.1128/AEM.02726-09 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Chaer G, Fernandes M, Myrold D, Bottomley P (2009) Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microb Ecol 58:414–424. doi: 10.1007/s00248-009-9508-x CrossRefPubMedGoogle Scholar
  20. Crawford M, Rincon-Florez V, Balzer A, Dang Y, Carvalhais L, Liu H, Schenk P (2015) Changes in the soil quality attributes of continuous no-till farming systems following a strategic tillage. Soil Res 53:263–273. doi: 10.1071/SR14216 CrossRefGoogle Scholar
  21. Dalal R, Chan K (2001) Soil organic matter in rainfed cropping systems of the Australian cereal belt. Aust J Soil Res 39:435–464. doi: 10.1071/SR99042 CrossRefGoogle Scholar
  22. Dalal RC, Henderson PA, Glasby JM (1991) Organic matter and microbial biomass in a vertisol after 20 years of zero-tillage. Soil Biol Biochem 23:435–441. doi: 10.1016/0038-0717(91)90006-6 CrossRefGoogle Scholar
  23. Dalal R, Strong W, Weston E, Cooper J, Lehane K, King A, Gaffney J (1994) Evaluation of forage and grain legumes, no-till and fertilisers to restore fertility degraded soils. Trans Int Soc Soil Sci 5a:62–74Google Scholar
  24. Dang YP, Routley R, McDonald M, Dala R, Singh D, Orange D, Mann M (2006) Subsoil constraints in vertosols: crop water use, nutrient concentration, and grain yields of bread wheat, durum wheat, barley, chickpea, and canola. Aust J Agric Res 57:983–998. doi: 10.1071/AR05268 CrossRefGoogle Scholar
  25. Dang YP, Moody PW, Bell MJ, Seymour NP, Dalal RC, Freebairn DM, Walker SR (2015a) Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions:II. Implications for agronomy, soil and environment. Soil Tillage Res 152:115–123. doi: 10.1016/j.still.2014.12.013 CrossRefGoogle Scholar
  26. Dang YP, Seymour NP, Walker SR, Bell MJ, Freebairn DM (2015b) Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: I. Drivers and implementation. Soil Tillage Res. doi: 10.1016/j.still.2015.03.009 Google Scholar
  27. Delmont TO, Francioli D, Jacquesson S, Laoudi S, Mathieu A, Nesme J, Ceccherini MT, Nannipieri P, Simonet P, Vogel TM (2014) Microbial community development and unseen diversity recovery in inoculated sterile soil. Biol Fertil Soils 50:1069–1076. doi: 10.1007/s00374-014-0925-8 CrossRefGoogle Scholar
  28. Drees L, Wilding L, Karathanasis A, Blevins R (1994) Micromorphological characteristics of long-term no-till and conventionally tilled soils. Soil Sci Soc Am J 58:508–517. doi: 10.2136/sssaj1994.03615995005800020037x CrossRefGoogle Scholar
  29. Fierer N, Schimel JP (2002) Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787. doi: 10.1016/S0038-0717(02)00007-X CrossRefGoogle Scholar
  30. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167176. doi: 10.1016/S0038-0717(02)00251-1 CrossRefGoogle Scholar
  31. González-Prieto S, Díaz-Raviña M, Martín A, López-Fando C (2013) Effects of agricultural management on chemical and biochemical properties of a semiarid soil from central Spain. Soil Tillage Res 134:49–55. doi: 10.1016/j.still.2013.07.007 CrossRefGoogle Scholar
  32. Gonzalez-Quiñones V, Stockdale E, Banning N, Hoyle F, Sawada Y, Wherrett A, Jones D, Murphy D (2011) Soil microbial biomass—interpretation and consideration for soil monitoring. Soil Res 49:287–304. doi: 10.1071/SR10203 CrossRefGoogle Scholar
  33. Green V, Stott D, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701. doi: 10.1016/j.soilbio.2005.06.020 CrossRefGoogle Scholar
  34. Green V, Stott D, Cruz J, Curi N (2007) Tillage impacts on soil biological activity and aggregation in a Brazilian cerrado oxisol. Soil Tillage Res 92:114–121. doi: 10.1016/j.still.2006.01.004 CrossRefGoogle Scholar
  35. Gregory AS, Watts CW, Griffiths BS, Hallett PD, Kuan HL, Whitmore AP (2009) The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma 153:172–185. doi: 10.1016/j.geoderma.2009.08.002 CrossRefGoogle Scholar
  36. Griffiths B, Hallett P, Kuan H, Gregory A, Watts C, Whitmore A (2008) Functional resilience of soil microbial communities depends on both soil structure and microbial community composition. Biol Fertil Soils 44:745–754. doi: 10.1007/s00374-007-0257-z CrossRefGoogle Scholar
  37. Hassing J (1995) Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biol Biochem 27:1099–1108. doi: 10.1016/0038-0717(95)00027-C CrossRefGoogle Scholar
  38. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23CrossRefGoogle Scholar
  39. IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  40. Jackson L, Calderon F, Steenwerth K, Scow K, Rolston D (2003) Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma 114:305–317. doi: 10.1016/S0016-7061(03)00046-6 CrossRefGoogle Scholar
  41. Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN, (Ed) Soil Biochem 5:230–257Google Scholar
  42. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415. doi: 10.1016/j.soilbio.2008.05.021 CrossRefGoogle Scholar
  43. Liu Z, Zhou W, Shen J, Li S, Ai C (2014) Soil quality assessment of yellow clayey paddy soils with different productivity. Biol Fertil Soils 50:537–548. doi: 10.1007/s00374-013-0864-9: CrossRefGoogle Scholar
  44. Martens R (1995) Current methods for measuring microbial biomass C in soil: potentials and limitations. Biol Fertil Soils 19:87–99. doi: 10.1007/BF00336142 CrossRefGoogle Scholar
  45. Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick R (eds) Enzymes in the environment. Marcel Dekker, New York, pp 1–33Google Scholar
  46. Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762. doi: 10.1007/s00374-012-0723-0 CrossRefGoogle Scholar
  47. Nicolardot B, Fauvet G, Cheneby D (1994) Carbon and nitrogen cycling through soil microbial biomass at various temperatures. Soil Biol Biochem 26:253–261. doi: 10.1016/0038-0717(94)90165-1 CrossRefGoogle Scholar
  48. Rincon-Florez VA, Carvalhais LC, Schenk PM (2013) Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5:581–612. doi: 10.3390/d5030581 CrossRefGoogle Scholar
  49. Roberts W, Chan K (1990) Tillage-induced increases in carbon dioxide loss from soil. Soil Tillage Res 17:143–151. doi: 10.1016/0167-1987(90)90012-3 CrossRefGoogle Scholar
  50. Robertson L, Kettle B, Simpson G (1994) The influence of tillage practices on soil macrofauna in a semi-arid agroecosystem in northeastern Australia. Agric Ecosyst Environ 48:149–156. doi: 10.1016/0167-8809(94)90085-X CrossRefGoogle Scholar
  51. Rousk J, Brookes PC, Baath E (2010) Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem 42:926–934. doi: 10.1016/j.soilbio.2010.02.009 CrossRefGoogle Scholar
  52. Saffigna P, Powlson D, Brookes P, Thomas G (1989) Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian vertisol. Soil Biol Biochem 21:759–765. doi: 10.1016/0038-0717(89)90167-3 CrossRefGoogle Scholar
  53. Schloter M, Dilly O, Munch J (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262. doi: 10.1016/S0167-8809(03)00085-9 CrossRefGoogle Scholar
  54. Shipitalo M, Protz R (1987) Comparison of morphology and porosity of a soil under conventional and zero tillage. Can J Soil Sci 67:445–456. doi: 10.4141/cjss87-043 CrossRefGoogle Scholar
  55. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176. doi: 10.1023/A:1016125726789 CrossRefGoogle Scholar
  56. Smith R, Tongway D, Tighe M, Reid N (2015) When does organic carbon induce aggregate stability in vertosols? Agric Ecosyst Environ 201:92–100CrossRefGoogle Scholar
  57. Sun B, Hallett PD, Caul S, Daniell TJ, Hopkins DW (2011) Distribution of soil carbon and microbial biomass in arable soils under different tillage regimes. Plant Soil 338:17–25. doi: 10.1007/s11104-010-0459-2 CrossRefGoogle Scholar
  58. Thomas G, Titmarsh G, Freebairn D, Radford B (2007) No-tillage and conservation farming practices in grain growing areas of Queensland—a review of 40 years of development. Anim Prod Sci 47:887–898. doi: 10.1071/EA06204 CrossRefGoogle Scholar
  59. Trasar-Cepeda C, Leiros C, Gil-Sotres F, Seoane S (1997) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26:100–106. doi: 10.1007/s003740050350 CrossRefGoogle Scholar
  60. Unger P (1990) Conservation tillage systems. Adv Soil Sci 13:27–68CrossRefGoogle Scholar
  61. Van Gestel M, Ladd J, Amato M (1992) Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles. Soil Biol Biochem 24:103–111. doi: 10.1016/0038-0717(92)90265-Y CrossRefGoogle Scholar
  62. Van Gestel M, Merckx R, Vlassak K (1993) Microbial biomass and activity in soils with fluctuating water contents. Geoderma 56:617–626. doi: 10.1016/0016-7061(93)90140-G CrossRefGoogle Scholar
  63. Wakelin S, Macdonald L, Rogers S, Gregg AL, Bolger T, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813. doi: 10.1016/j.soilbio.2007.10.015 CrossRefGoogle Scholar
  64. Wortmann C, Quincke J, Drijber R, Mamo M, Franti T (2008) Soil microbial community change and recovery after one-time tillage of continuous no-till. Agron J 100:1681–1686. doi: 10.2134/agronj2007.0317 CrossRefGoogle Scholar
  65. Wortmann C, Drijber R, Franti T (2010) One-time tillage of no-till crop land 5 years post-tillage. Agron J 102:1302–1307. doi: 10.2134/agronj2010.0051 CrossRefGoogle Scholar
  66. Young I, Ritz K (2000) Tillage, habitat space and function of soil microbes. Soil Tillage Res 53:201–213. doi: 10.1016/S0167-1987(99)00106-3 CrossRefGoogle Scholar
  67. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108. doi: 10.1016/0038-0717(94)90131-7 CrossRefGoogle Scholar
  68. Zogg GP, Zak DR, Ringelberg DB, White DC, MacDonald NW, Pregitzer KS (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481. doi: 10.2136/sssaj1997.03615995006100020015x CrossRefGoogle Scholar
  69. Zumteg A, Luster J, Göransson H, Smittenberg RH, Brunner I, Bernasconi SM, Zeyer J, Frey B (2012) Bacterial, archaeal and fungal sucession in the forestfield of a receding glacier. Microb Ecol 63:552–564. doi: 10.1007/s002482-011-9991-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vivian A. Rincon-Florez
    • 1
  • Yash P. Dang
    • 2
  • Mark H. Crawford
    • 3
  • Peer M. Schenk
    • 1
  • Lilia C. Carvalhais
    • 1
  1. 1.Plant-Microbe Interactions Laboratory, School of Agriculture and Food SciencesThe University of QueenslandSt LuciaAustralia
  2. 2.School of Agriculture and Food SciencesThe University of QueenslandSt LuciaAustralia
  3. 3.Department of Science, Information TechnologyInnovation and the Arts (DSITIA)ToowoombaAustralia

Personalised recommendations