Advertisement

Biology and Fertility of Soils

, Volume 51, Issue 8, pp 923–933 | Cite as

Consequences of minimum soil tillage on abiotic soil properties and composition of microbial communities in a shallow Cambisol originated from fluvioglacial deposits

  • Anela Kaurin
  • Rok Mihelič
  • Damijana Kastelec
  • Michael Schloter
  • Marjetka Suhadolc
  • Helena Grčman
Original Paper

Abstract

A long-term field experiment was run for 12 years to evaluate the impact of minimum tillage (MT) compared to conventional mouldboard ploughing (CT) on soil chemical, physical and microbial properties in a shallow Cambisol formed over fluvioglacial deposits of Drava river in Slovenia. Significant differences between MT and CT were found in vertical distribution of soil organic C (SOC) and nutrients (total N and plant available potassium); under MT, concentrations decreased from the soil surface to the lower layers, as opposed to CT which maintained rather uniform distribution down to the ploughing depth. MT in comparison with CT also increased the proportion of water-stable 2–4-mm-sized aggregates (80.9 and 61.3 %, respectively), water holding capacity (24.8 and 22.2 %, respectively) and plant available water (13.4 and 10.3 %, respectively) in the upper 0–10-cm soil layer. Bulk density, porosity, the proportion of water-stable 1–2-mm-sized aggregates and infiltration rate showed no significant differences between the tillage treatments. SOC content in the upper 0–10-cm soil layer was not significantly different between MT and CT (1.60 ± 0.07 and 1.45 ± 0.05 %, respectively), as well as the overall stock in the investigated soil profile (0–60 cm) remained unaffected (57.4 ± 0.8 and 59.1 ± 2.2 t ha−1, respectively). Microbial biomass, estimated by the total soil DNA, was higher in MT than CT in the 0–10-cm layer. Furthermore, a positive linear dependence of microbial biomass on SOC content was observed. Fingerprinting of bacterial, fungal and archaeal communities indicated that microbial community composition changed by long-term MT, whereas changes in microbial diversity were not detected for any domain. The most pronounced shifts in the composition were found for bacterial communities in the 10–20-cm layer, while the composition of fungal communities slightly changed in the upper 0–10 cm of MT soil. The composition of archaeal communities was not affected by the tillage or by the soil depth. Our results indicate that MT generates modest changes in soil structure and soil water retention properties and could support measures against erosion, drought and nutrient leaching. Considering increased microbial biomass in the topsoil of MT and shifts in microbial diversity, the impacts of MT on soil microbiome are also evident and need to be further investigated to identify the affected functional traits.

Keywords

Soil organic matter Microbial biomass Water retention Bacteria Fungi Archaea 

Notes

Acknowledgments

This work was supported by the Slovenian Research Agency (ARRS) project J4-4224, ARRS Grant for PhD student Anela Kaurin and the European project EcoFINDERS (FP7-264465). Farmer Branko Majerič, owner of the experimental field, is greatly acknowledged for all support provided.

Supplementary material

374_2015_1037_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)
374_2015_1037_MOESM2_ESM.docx (17 kb)
ESM 2 (DOCX 17 kb)
374_2015_1037_MOESM3_ESM.docx (18 kb)
ESM 3 (DOCX 17 kb)
374_2015_1037_MOESM4_ESM.docx (18 kb)
ESM 4 (DOCX 17 kb)
374_2015_1037_MOESM5_ESM.docx (3.6 mb)
ESM 5 (DOCX 3.63 mb)

References

  1. Acosta-Martinez V, Dowd SE, Bell CW, Lascano R, Booker JD, Zobeck TM, Upchurch DR (2010) Microbial community composition as affected by dryland cropping systems and tillage in a semiarid sandy soil. Diversity 2:910–931. doi: 10.3390/d2060910 CrossRefGoogle Scholar
  2. Alvarado P, Manjon JL (2009) Selection of enzymes for terminal restriction fragment length polymorphism analysis of fungal internally transcribed spacer sequences. Appl Environ Microbiol 75:4747–4752. doi: 10.1128/AEM.00568-09 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20. doi: 10.1016/j.soilbio.2011.09.003 CrossRefGoogle Scholar
  4. Bru D, Ramette A, Saby NPA, Dequiedt S, Ranjard L, Jolivet G, Arrouays D, Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J 5:532–542. doi: 10.1038/ismej.2010.130 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Burke DJ, Martin KJ, Rygiewicz PT, Topa MA (2005) Ectomycorrhizal fungi identification in single and pooled root samples: terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. Soil Biol Biochem 37:1683–1694. doi: 10.1016/j.soilbio.2005.01.028 CrossRefGoogle Scholar
  6. Cavigelli MA, Lengnick LL, Buyer JS, Fravel D, Handoo Z, McCarty G, Millnera P, Sikoraf L, Wrighta S, Vinyardg B, Rabenhorsth M (2005) Landscape level variation in soil resources and microbial properties in a no-till corn field. Appl Soil Ecol 29:99–123. doi: 10.1016/j.apsoil.2004.12.007 CrossRefGoogle Scholar
  7. Ceja-Navarro JA, Rivera-Orduña FN, Patiño-Zúñiga L, Vila-Sanjurjo A, Crossa J, Govaerts B, Dendooven L (2010) Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl Environ Microbiol 76:3685–3691. doi: 10.1128/AEM.02726-09 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Chikoye D, Abaidoo R, Fontem LA (2014) Response of weeds and soil microorganisms to imazaquin and pendimethalin in cowpea and soybean. Crop Prot 65:168–172. doi: 10.1016/j.cropro.2014.07.004 CrossRefGoogle Scholar
  9. Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52:345–353. doi: 10.1046/j.1365-2389.2001.00417.x CrossRefGoogle Scholar
  10. Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10:171, http://trex.biohpc.org/ PubMedCentralCrossRefPubMedGoogle Scholar
  11. Dimassi B, Mary B, Wylleman R, Labreuche J, Couture D, Piraux F, Cohan JP (2014) Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years Agriculture. Agric Ecosyst Environt 188:134–146. doi: 10.1016/j.agee.2014.02.014 CrossRefGoogle Scholar
  12. Djukic I, Zehetner F, Mentler A, Gerzabek MH (2010) Microbial community composition and activity in different Alpine vegetation zones. Soil Biol Biochem 42:155–161. doi: 10.1016/j.soilbio.2009.10.006 CrossRefGoogle Scholar
  13. Drenovsky RE, Vo D, Graham KJ, Scow KM (2004) Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol 48:424–430. doi: 10.1007/s00248-003-1063-2 CrossRefPubMedGoogle Scholar
  14. Elliot ET, Coleman DC (1988) Let the soil work for us. Ecological Bulletins 39:23–32Google Scholar
  15. Feller C, Albrecht A, Tessier AD (1996) Aggregation and organic matter storage in kaolinitic and smectitic soils. In: Carter MR, Stewart BA (eds) Aggregation and organic matter storage in agricultural soils. CRS Press, Raton, pp 309–359Google Scholar
  16. Garcia-Pausas GJ, Paterson E (2011) Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biol Biochem 4:1705–1713. doi: 10.1016/j.soilbio.2011.04.016 CrossRefGoogle Scholar
  17. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654. doi: 10.1111/j.1462-2920.2011.02480.x CrossRefPubMedGoogle Scholar
  18. Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969PubMedCentralPubMedGoogle Scholar
  19. Harrison-Kirk T, Beare MH, Meenken ED, Condron LM (2013) Soil organic matter and texture affect responses to dry/wet cycles: effects on carbon dioxide and nitrous oxide emissions. Soil Biol Biochem 57:43–55. doi: 10.1016/j.soilbio.2012.10.008 CrossRefGoogle Scholar
  20. Helgason BL, Walleyb FL, Germidab JJ (2010) No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl Soil Ecol 46:390–397. doi: 10.1016/j.apsoil.2010.10.002 CrossRefGoogle Scholar
  21. Helgason BL, Konschuh HJ, Bedard-Haughn A, Vanden Bygaart AJ (2014) Microbial distribution in an eroded landscape: buried A horizons support abundant and unique communities. Agric Ecosyst Environ 196:94–102. doi: 10.1016/j.agee.2014.06.029 CrossRefGoogle Scholar
  22. Hu Y, Xiang D, Veresoglou SD, Chen F, Chen Y, Hao Z, Zhang X, Chen B (2014) Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biol Biochem 77:51–57. doi: 10.1016/j.soilbio.2014.06.014 CrossRefGoogle Scholar
  23. Huang M, Jiang L, Zou Y, Xu S, Deng G (2013) Changes in soil microbial properties with no-tillage in Chinese cropping systems. Biol Fertil Soils 49:373–377. doi: 10.1007/s00374-013-0778-6 CrossRefGoogle Scholar
  24. ISO 10390 (2005) Soil quality—determination of pH. International Organization for Standardization, Genève, SwitzerlandGoogle Scholar
  25. ISO 10694 (1996) Determination of organic and total carbon after dry combustion (elementary analysis). International Organization for Standardization, Genève, SwitzerlandGoogle Scholar
  26. ISO 11274 (1998) Soil quality—determination of the water retention characteristic, laboratory methods. International Organization for Standardization, Genève, SwitzerlandGoogle Scholar
  27. ISO 11277 (2009) Determination of particle size distribution in mineral soil material-method by sieving and sedimentation. International Organization for Standardization, Genève, SwitzerlandGoogle Scholar
  28. ISO 11464 (2006) Soil quality—pretreatment of samples for physico-chemical analysis. International Organization for Standardization, Genève, SwitzerlandGoogle Scholar
  29. ISO 11465 (1993) Soil quality—determination of dry matter and water content on a mass basis—gravimetric method. International Organization for Standardization, Genève, SwitzerlandGoogle Scholar
  30. ISO 13878 (1987) Determination of total nitrogen content by dry combustion (“Elemental Analysis”). International Organization for Standardization, Genève, SwitzerlandGoogle Scholar
  31. IUSS Working Group WRB (2014) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  32. Johnson D, Booth RE, Whiteley AS, Bailey MJ, Read DJ, Grime JP, Leake JR (2003) Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur J Soil Sci 54:671–678. doi: 10.1046/j.1351-0754.2003.0562.x CrossRefGoogle Scholar
  33. Kemper WD, Rosenau RC (1986) Aggregate stability and size distribution. In: Klute A (ed) Methods of soil analysis, part 1. Physical and mineralogical methods, 2nd edn. ASA and SSSA, Madison, pp 425–442Google Scholar
  34. Lane DJ (1991) 16/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Chichester, United Kingdom, pp 115–175Google Scholar
  35. Lehmann J, Kinyangi J, Solomon D (2007) Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85:45–57. doi: 10.1007/s10533-007-9105-3 CrossRefGoogle Scholar
  36. Liu W, Marsh T, Cheng H, Forney L (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522PubMedCentralPubMedGoogle Scholar
  37. Macdonald LM, Sing BK, Thomas N, Brewer MJ, Campbell CD, Dawson LA (2008) Microbial DNA profiling by multiplex terminal restriction fragment length polymorphism for forensic comparison of soil and the influence of sample condition. Appl Environ Microbiol 105:813–821. doi: 10.1111/j.1365-2672.2008.03819.x CrossRefGoogle Scholar
  38. Meyer A, Focks A, Radl V, Keil D, Welzl G, Schöning I, Boch S, Marhan S, Kandeler E, Schloter M (2013) Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLOS One 8:e73536. doi: 10.1371/journal.pone.0073536 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Mihelič R, Kastelec D, Rupreht J (2002) Determination of zones in Slovenia with potential risk of soil percolate contamination with nitrate-nitrogen. New challenges in field crop production 2002: proceedings of symposium, pp 196–200Google Scholar
  40. Ollivier J, Töwe S, Bannert A, Hai B, Kastl EM, Meyer A, Su MX, Kleineidam K, Schloter M (2011) Nitrogen turnover in soil and global change. FEMS Microbiol Ecol 78:3–16. doi: 10.1111/j.1574-6941.2011.01165.x CrossRefPubMedGoogle Scholar
  41. Ollivier J, Schacht D, Kindler R, Groneweg J, Engel M, Wilke B, Kleineidam K, Schloter M (2013) Effects of repeated application of sulfadiazine-contaminated pig manure on the abundance and diversity of ammonia- and nitrite oxidizers in the root-rhizosphere complex of pasture plants under field conditions. Front Microbiol 4:22. doi: 10.3389/fmicb.2013.00022 PubMedCentralPubMedGoogle Scholar
  42. ÖNORML1087 (1993) Chemical analysis of soils: determination of plant-available phosphate and potassium by calcium-acetate-lactate. Österreichisches Normungsinstitut, AustriaGoogle Scholar
  43. Perez-Brandan C, Arzeno JL, Huidobro J, Grümberg B, Conforto C, Hilton S, Bending GD, Meriles JM, Vargas-Gi S (2012) Long-term effect of tillage systems on soil microbiological, chemical and physical parameters and the incidence of charcoal rot by Macrophomina phaseolina (Tassi) Goid in soybean. Crop Protection 40:73–82. doi: 10.1016/j.cropro.2012.04.018 CrossRefGoogle Scholar
  44. Pietikainen J, Pettersson M, Baath E (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 52:49–58. doi: 10.1016/j.femsec.2004.10.002 CrossRefPubMedGoogle Scholar
  45. Powlson DS, Brookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164. doi: 10.1016/0038-0717(87)90076-9 CrossRefGoogle Scholar
  46. R Core Team (2013) A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. http://www.R-project.org
  47. Roger-Estrade J, Anger C, Bertrand M, Richard G (2010) Tillage and soil ecology: partners for sustainable agriculture. Soil Till Res 111:33–40. doi: 10.1016/j.still.2010.08.010 CrossRefGoogle Scholar
  48. Säle V, Aguilera P, Laczko E, Mader P, Berner A, Zihlmann U, van der Heijden MGA, Oehl F (2015) Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol Biochem 84:38–52. doi: 10.1016/j.soilbio.2015.02.005 CrossRefGoogle Scholar
  49. Schauss K, Focks F, Heuer H, Kotzerke A, Schmitt H, Thiele-Bruhn S, Smalla K, Wilke BM, Matthies M, Amelung W, Klasmeier J, Schloter M (2009) Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. TrAC Trends in Analytical Chemistry 28:612–618. doi: 10.1016/j.trac.2009.02.009 CrossRefGoogle Scholar
  50. Schulz S, Brankatschk R, Dumig A, Kogel-Knabner I, Schloter M, Zeyer J (2013) The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10:3983–3996. doi: 10.5194/bg-10-3983-2013 CrossRefGoogle Scholar
  51. Seghers D, Siciliano SD, Top EM, Verstraete W (2005) Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biol Biochem 37:187–193. doi: 10.1016/j.soilbio.2004.05.025 CrossRefGoogle Scholar
  52. Shi Y, Lalande R, Hamel C, Ziadi N, Gagnon B, Hu Z (2013) Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices. Biol Fertil Soils 49:803–818. doi: 10.1007/s00374-013-0773-y CrossRefGoogle Scholar
  53. Silva AP, Babujia LC, Matsumoto LS, Guimarães MF, Hungria M (2013) Bacterial diversity under different tillage and crop rotation systems in an Oxisol of Southern Brazil. The Open Agriculture Journal 7:40–47CrossRefGoogle Scholar
  54. Six J, Feller C, Denef K, Ogle SM, de MoraesSa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22:755–775. doi: 10.1051/agro:2002043 CrossRefGoogle Scholar
  55. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro )aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31. doi: 10.1016/j.still.2004.03.008 CrossRefGoogle Scholar
  56. Soane BD, Ball BC, Arvidsson J, Basch G, Moreno E, Roger-Estrade J (2012) No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Till Res 118:66–87. doi: 10.1016/j.still.2011.10.015 CrossRefGoogle Scholar
  57. Soil Survey laboratory methods manual (2004) Soil survey investigations report no. 42, version 4.0. Burt R (ed). U.S. Department of Agriculture, Natural Resources Conservation ServiceGoogle Scholar
  58. Souza RC, Cantão ME, Ribeiro Vasconcelos AT, Nogueira MA, Hungria M (2013) Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. AppL Soil Ecol 72:49–61. doi: 10.1016/j.apsoil.2013.05.021 CrossRefGoogle Scholar
  59. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (Eds) Nucleic acid techniques in bacterial systematics. Chichester, UKGoogle Scholar
  60. Strandberg M, Scott-Fordsmand JJ (2004) Effects of pendimethalin at lower trophic levels—a review. Ecotoxicology and Environmental Safety 57:190–201. doi: 10.1016/j.ecoenv.2003.07.010 CrossRefPubMedGoogle Scholar
  61. Tabaglio V, Gavazzi C, Menta C (2009) Physico-chemical indicators and microarthropod communities as influenced by no-till, conventional tillage and nitrogen fertilisation after four years of continuous maize. Soil Till Res 105:135–142. doi: 10.1016/j.still.2009.06.006 CrossRefGoogle Scholar
  62. Thiele-Bruhn S, Bloem J, de Vries FT, Kalbitz K, Wagg C (2012) Linking soil biodiversity and agricultural soil management. Curr Opin Environ Sustainability 4:523–528. doi: 10.1016/j.cosust.2012.06.004 CrossRefGoogle Scholar
  63. Ulrich A, Becker R (2006) Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol Ecol 56:430–443. doi: 10.1111/j.1574-6941.2006.00085.x CrossRefPubMedGoogle Scholar
  64. van Capelle C, Schrader S, Brunotte J (2012) Tillage-induced changes in the functional diversity of soil biota—a review with a focus on German data. Eur J Soil Biol 50:165–181. doi: 10.1016/j.ejsobi.2012.02.005 CrossRefGoogle Scholar
  65. Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239. doi: 10.1111/j.1461-0248.2012.01844.x CrossRefPubMedGoogle Scholar
  66. Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813. doi: 10.1016/j.soilbio.2007.10.015 CrossRefGoogle Scholar
  67. Wardle D (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Adv Ecol Res 26:105–185CrossRefGoogle Scholar
  68. Wetze K, Silva G, Matczinski U, Oehl F, Fester T (2014) Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol Biochem 72:88–96. doi: 10.1016/j.soilbio.2014.01.033 CrossRefGoogle Scholar
  69. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  70. Wortmann CS, Quincke JA, Drijber RA, Mamo M, Franti T (2008) Soil microbial community change and recovery after one-time tillage of continuous no-till. Agron J 100:1681–1686. doi: 10.2134/agronj2007.0317 CrossRefGoogle Scholar
  71. Yaduvanshi NPS, Sharma DR (2008) Tillage and organic residue manures/ chemical amendment effects on soil organic matter and yield of wheat under sodic water irrigation. Soil Till Res 98:11–16. doi: 10.1016/j.still.2007.09.010 CrossRefGoogle Scholar
  72. Young IM, Ritz K (2000) Tillage, habitat space and function of soil microbes. Soil Till Res 53:201–213CrossRefGoogle Scholar
  73. Zumsteg A, Luster J, Göransson H, Smittenberg RH, Brunner I, Bernascon SM, Zeyer J, Frey B (2012) Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol 63:552–564. doi: 10.1007/s00248-011-9991-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Anela Kaurin
    • 1
  • Rok Mihelič
    • 1
  • Damijana Kastelec
    • 1
  • Michael Schloter
    • 2
  • Marjetka Suhadolc
    • 1
  • Helena Grčman
    • 1
  1. 1.Agronomy Department, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Research Unit for Environmental GenomicsHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations