Skip to main content

Advertisement

Log in

Land-use intensity and soil properties shape the composition of fungal communities in Mediterranean peaty soils drained for agricultural purposes

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Anthropogenic effects on soil fungi have been poorly investigated in peaty soils, where they have a crucial role in the maintenance of soil fertility and in the regulation of nutrient cycles. In this study, we assessed the effects of land-use intensification on the composition of fungal communities in Mediterranean peaty soils drained for agricultural purposes. To this end, a continuous maize cropping system was compared with an extensive grassland and an agricultural soil left abandoned for 15 years. Molecular diversity and community composition of total soil fungi and arbuscular mycorrhizal fungi (AMF) were assessed, as well as soil chemical properties potentially responsible for fungal shifts. The relative roles of intensification and soil chemical properties were also quantified by applying variation partitioning analysis. Multivariate analyses show that: (i) land-use intensification shapes the composition of the community of total soil fungi and AMF in soil and roots; (ii) base saturation (Bas Sat) and exchangeable calcium (ExchCa) in soil are the significant soil chemical drivers of the composition of the total soil fungal community; (iii) Bas Sat is the only significant chemical parameter shaping the soil AMF community; and (iv) no soil chemical properties affect root AMF. Based on variation partitioning, which highlights a large overlap between land-use intensification and Bas Sat, we can assert that land-use intensification is well-correlated with Bas Sat in shaping the total soil fungal community composition, as well as the AMF. By contrast, intensification acts as a major driver with respect to ExchCa in shaping the composition of the total soil fungal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39:1878–1887

    Article  CAS  Google Scholar 

  • Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994

    Article  CAS  Google Scholar 

  • Anderson IC, Cairney JW (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  CAS  PubMed  Google Scholar 

  • Antonsen H, Olsson PA (2005) Relative importance of burning, mowing and species translocation in the restoration of a former boreal hayfield: responses of plant diversity and the microbial community. J Appl Ecol 42:337–347

    Article  Google Scholar 

  • Artz RR, Anderson IC, Chapman SJ, Hagn A, Schloter M, Potts JM, Campbell CD (2007) Changes in fungal community composition in response to vegetational succession during the natural regeneration of cutover peatlands. Microb Ecol 54:508–522

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 1:3–42

    Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in in arbuscular mycorrhizas. Plant Physiol 124:949–958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bahri H, Dignac MF, Rumpel C, Rasse DP, Chenu C, Mariotti A (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38:1977–1988

    Article  CAS  Google Scholar 

  • Bardgett RD, Hobbs PJ, Frostegård Å (1996) Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264

    Article  Google Scholar 

  • Bardgett RD, Usher MB, Hopkins DW (2005) Biological diversity and function in soils. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta‐analysis. J Ecol 98:745–753

    Article  Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  • Bittman S, Forge TA, Kowalenko CG (2005) Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer. Soil Biol Biochem 37:613–623

    Article  CAS  Google Scholar 

  • Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • da Silva IR, de Mello CMA, Neto RAF, da Silva DKA, de Melo AL, Oehl F, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Appl Soil Ecol 84:166–175

    Article  Google Scholar 

  • Dai M, Bainard LD, Hamel C, Gan Y, Lynch D (2013) Impact of land use on arbuscular mycorrhizal fungal communities in rural Canada. Appl Environ Microbiol 79:6719–6729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    Article  CAS  PubMed  Google Scholar 

  • Denef K, Roobroeck D, Manimel Wadu MC, Lootens P, Boeckx P (2009) Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biol Biochem 41:144–153

    Article  CAS  Google Scholar 

  • Di Bene C, Pellegrino E, Debolini M, Silvestri N, Bonari E (2013) Short- and long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biol Biochem 56:21–30

    Article  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

  • Eom AH, Hartnett DC, Wilson GWT, Figge DAH (1999) The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tall-grass prairie. Am Midl Nat 142:55–70

    Article  Google Scholar 

  • Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377

    Article  Google Scholar 

  • Ford H, Rousk J, Garbutt A, Jones L, Jones DL (2013) Grazing effects on microbial community composition, growth and nutrient cycling in salt marsh and sand dune grasslands. Biol Fertil Soils 49:89–98

    Article  Google Scholar 

  • Franke-Snyder M, Douds DD, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48

    Article  Google Scholar 

  • Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK (2009) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci 106:18315–18320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gadd GM (2006) Fungi in biogeochemical cycles (vol 24). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Galvan GA, Paradi I, Burger K, Baar J, Kuyper TW, Scholten OE, Kik C (2009) Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza 19:317–328

    Article  PubMed Central  PubMed  Google Scholar 

  • García-Orenes F, Morugán-Coronado A, Zornoza R, Scow K (2013) Changes in soil microbial community structure influenced by agricultural management practices in a Mediterranean agro-ecosystem. PLoS One 8:e80522

    Article  PubMed Central  PubMed  Google Scholar 

  • Gleason FH, Letcher PM, McGee PA (2004) Some Chytridiomycota in soil recover from drying and high temperatures. Mycol Res 108:583–589

    Article  PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Clegg CD, Ritz K, Griffiths BS, Rodwell JS, Edwards SJ, Davies WJ, Elston DJ, Millard P (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84

    Article  Google Scholar 

  • Hannula SE, De Boer W, Van Veen J (2012) A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects. PLoS One 7:e33819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JP (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  CAS  PubMed  Google Scholar 

  • Herr JR, Öpik M, Hibbett DS (2015) Towards the unification of sequence‐based classification and sequence‐based identification of host‐associated microorganisms. New Phytol 205:27–31

    Article  PubMed  Google Scholar 

  • Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Holland TC, Bowen P, Bogdanoff C, Hart MM (2014) How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol Fertil Soils 50:667–674

    Article  Google Scholar 

  • Hoshino YT, Morimoto S (2008) Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis. Soil Sci Plant Nutr 54:701–710

    Article  CAS  Google Scholar 

  • Hunt J, Boddy L, Randerson PF, Rogers HJ (2004) An evaluation of 18S rDNA approaches for the study of fungal diversity in grassland soils. Microb Ecol 47:385–395

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2006) 2006 IPCC Agriculture, Forestry and other land uses. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Guidelines for National Greenhouse Gas Inventories (vol 4) prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan

    Google Scholar 

  • Jansa J, Erb A, Oberholzer HR, Šmilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118–2135

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  PubMed  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  • Klaubauf S, Inselsbacher E, Zechmeister-Boltenstern S, Wanek W, Gottsberger R, Strauss J, Gorfer M (2010) Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Divers 44:65–75

    Article  PubMed Central  PubMed  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüssler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Kuramae EE, Hillekens RH, Hollander M, Heijden MG, den Berg M, Straalen NM, Kowalchuk GA (2013) Structural and functional variation in soil fungal communities associated with litter bags containing maize leaf. FEMS Microbiol Ecol 84:519–531

    Article  CAS  PubMed  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Legendre P (2008) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J Plant Physiol 1:3–8

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lienhard P, Terrat S, Prévost-Bouré NC, Nowak V, Régnier T, Sayphoummie S, Panyasiri K, Tivet F, Mathieu O, Levêque J, Maron PA, Ranjard L (2014) Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron Sustain Dev 34:525–533

    Article  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Koljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high‐throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • Lynch MD, Thorn RG (2006) Diversity of basidiomycetes in Michigan agricultural soils. Appl Environ Microbiol 72:7050–7056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • Moora M, Davison J, Öpik M, Metsis M, Saks Ü, Jairus T, Vasar M, Zobel M (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol. doi:10.1111/1574-6941.12420

    PubMed  Google Scholar 

  • Muneer M, Oades JM (1989) The role of Ca-organic interactions in soil aggregate stability: III. Mechanisms and models. Aust J Soil Res 27:411–423

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nemergut DR, Townsend AR, Sattin SR, Freeman KR, Fierer N, Neff J, Bowman WD, Schadt CW, Weintraub MN, Schmidt SK (2008) The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ Microbiol 10:3093–3105

    Article  CAS  PubMed  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  CAS  PubMed  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS One 7(4):e34847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pellegrino E, Bosco S, Ciccolini V, Pistocchi C, Sabbatini T, Silvestri N, Bonari E (2014) Agricultural abandonment in Mediterranean reclaimed peaty soils: long-term effects on soil chemical properties, arbuscular mycorrhizas and CO2 flux. Agric Ecosyst Environ 199:164–175

    Article  Google Scholar 

  • Pellegrino E, Di Bene C, Tozzini C, Bonari E (2011) Impact on soil quality of a 10-year-old short-rotation coppice poplar stand compared with intensive agricultural and uncultivated systems in a Mediterranean area. Agric Ecosyst Environ 140:245–254

    Article  Google Scholar 

  • Pellegrino E, Turrini A, Gamper HA, Cafà G, Bonari E, Young JPW, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822

    Article  CAS  PubMed  Google Scholar 

  • Pistocchi C, Silvestri N, Rossetto R, Sabbatini T, Guidi M, Baneschi I, Bonari E, Trevisan D (2012) A simple model to assess nitrogen and phosphorus contamination in ungauged surface drainage networks: application to the Massaciuccoli Lake Catchment, Italy. J Environ Qual 41:544–553

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eber L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211–220

    Article  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Article  Google Scholar 

  • Schuessler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Soil Survey Staff (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. USDA-SCS Agric. Handb. 436. U.S. Gov Print Office, Washington

    Google Scholar 

  • Stromberger ME (2005) Fungal communities of agroecosystems. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 813–832

    Chapter  Google Scholar 

  • Tavi NM, Keinänen-Toivola MM, Koponen HT, Huttunen JT, Kekki TK, Biasi C, Martikainen PJ (2010) Impact of Phalaris arundinacea cultivation on microbial community of a cutover peatland. Boreal Environ Res 15:437–445

    Google Scholar 

  • ter Braak CJF, Schaffers AP (2004) Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology 85:834–846

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2012) Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power, Ithaca

    Google Scholar 

  • Thormann MN (2006) Diversity and function of fungi in peatlands: a carbon cycling perspective. Can J Soil Sci 86:281–293

    Article  CAS  Google Scholar 

  • Titus JH, Lepš J (2000) The response of arbuscular mycorrhizae to fertilization, mowing, and removal of dominant species in a diverse oligotrophic wet meadow. Am J Bot 87:392–401

    Article  CAS  PubMed  Google Scholar 

  • Torrecillas E, Alguacil MM, Roldan A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78:6180–6186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:72–75

    Article  Google Scholar 

  • Verbruggen E, van der Heijden MGA, Weedon JT, Kowalchuk GA, Roling WFM (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341–2353

    Article  PubMed  Google Scholar 

  • Verhoeven JT, Setter TL (2010) Agricultural use of wetlands: opportunities and limitations. Ann Bot London 105:155–163

    Article  Google Scholar 

  • Xiang D, Verbruggen E, Hu Y, Veresoglou SD, Rillig MC, Zhou W, Xu T, Li H, Hao Z, Chen Y, Chen B (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytol 204:968–978

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work represents part of the PhD thesis project of C.V. which was funded by Scuola Superiore Sant’Anna. The work was also supported by the “Consorzio di Bonifica Versilia-Massaciuccoli” and the “Regione Toscana” (“Restoration of a Mediterranean Drained Peatland”: https://sites.google.com/site/restomedpeat-land/home). We are grateful to Martti Vasar for his bioinformatic advices. The authors wish to thank the two anonymous reviewers and the editor for their help in improving the previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Pellegrino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 24.1 kb)

ESM 2

(DOCX 70.7 kb)

Supplementary Fig. S6

Neighbor-Joining (NJ) tree of total soil fungal sequences derived from soil from three levels of intensification of land use: high intensity (diamond; HI: maize monoculture), low intensity (square; LI: extensive grassland) and zero intensity (triangle; ZI: agricultural soil left abandoned). NJ is based on the fungal 18S rRNA gene (≈ 1650 bp; NS1/FR1 fragment) and involved 143 newly detected nucleotide sequences plus 25 reference sequences retrieved from the NCBI database. The tree is rooted with Meristolohmannia meristacaroides. The sequences retrieved were classified in 16 AMF molecular operational taxonomic units (MOTUs) affiliated with the orders Hypocreales (1, 2), Sordariales (3), Xylariales (4), Chaetothyriales (5), Eurotiales (6), Pleosporales (7), Dothideomycetes (8), Helotiales (9), Agaricales (10), Gomphales (11), Corticiales (12), Filobasidiales (13), Tremellales (14) and to two classes Chytridiomycota (15) and Zygomycota (16). Bootstrap values (based on 1000 replicates) are shown at the nodes. The scale bar indicates substitutions per site. Sequences obtained in the present study are shown in bold, and their accession numbers are prefixed by the internal clone identifier (H) and the soil sample number from which they were obtained. All new sequences were submitted to the EMBL nucleotide sequence database (accession numbers: LN555148 - LN555383 and LN555530 - LN555579) (JPEG 1.37 MB)

ESM 3

(DOCX 67.4 kb)

Supplementary Fig. S7

Rarefaction curves showing the relation between sampled sequence number and the number of observed molecular operational taxonomic units (MOTUs) of (a) soil arbuscular mycorrhizal fungi (AMF), (b) root AMF and (c) total soil fungi retrieved in three levels of intensification of land use: high intensity (HI; maize monoculture; red line), low intensity (LI; extensive grassland; yellow line) and zero intensity (ZI; agricultural soil left abandoned; green line). AMF sequences from HI and ZI land-use types are from Pellegrino et al. (2014) (JPEG 162 kb)

ESM 4

(DOCX 64.0 kb)

ESM 5

(DOCX 15.5 kb)

Supplementary Fig. S8

Neighbor-Joining tree of sequences of arbuscular mycorrhizal fungi (AMF) derived from soil and roots (open and filled symbols, respectively) from three levels of intensification of land use: high intensity (diamond; HI: maize monoculture), low intensity (square; LI: extensive grassland) and zero intensity (triangle; ZI: agricultural soil left abandoned). Analysis is based on SSU rRNA gene sequences (SSU ≈ 550 bp; NS31/AM1 fragment) and involved 339 sequences (139 newly detected nucleotide sequences, 160 sequences retrieved from Pellegrino et al. (2014), 27 from the reference dataset, 12 from GenBank). The tree is rooted with Corallochytrium limacisporum. The sequences retrieved were classified in 17 AMF molecular operational taxonomic units (MOTUs) affiliated with Funneliformis sp. (12, 13), Rhizophagus sp. (5, 6, 7), Sclerocystis sp. (4), Scutellospora sp. (15), Glomus spp. (1, 2, 3, 8, 9, 10, 11, 14) and uncultured Glomeromycota (16, 17). Bootstrap values (based on 1000 replicates) are shown at the nodes. The scale bar indicates substitutions per site. Sequences obtained in the present study are shown in bold, and their accession numbers are prefixed by the internal clone identifier (clones from roots and soil are identified by a and G, respectively) and the root/soil sample number from which they were obtained. Sequences from HI and ZI land-use types are from Pellegrino et al. (2014). All new sequences were submitted to the EMBL nucleotide sequence database (accession numbers: LN555384- LN555522). The correspondence between MOTUs and the closest virtual taxa (VT) after BLAST search against the MaarjAM database (Öpik et al., 2010) is shown (JPEG 867 kb)

ESM 6

(DOCX 16.0 kb)

ESM 7

(DOCX 16.0 kb)

Supplementary Fig. S9

Community diversity of arbuscular mycorrhizal fungi (AMF) shown as relative abundances of the 17 molecular operational taxonomic units (MOTUs) retrieved in (a) the soil and (b) the roots from three levels of intensification of land use: high intensity (HI; maize monoculture), low intensity (LI; extensive grassland) and zero intensity (ZI; agricultural soil left abandoned). AMF relative abundances from HI and ZI land-use types are from Pellegrino et al. (2014) (JPEG 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciccolini, V., Bonari, E. & Pellegrino, E. Land-use intensity and soil properties shape the composition of fungal communities in Mediterranean peaty soils drained for agricultural purposes. Biol Fertil Soils 51, 719–731 (2015). https://doi.org/10.1007/s00374-015-1013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1013-4

Keywords

Navigation