Skip to main content

Bio-inoculation of yerba mate seedlings (Ilex paraguariensis St. Hill.) with native plant growth-promoting rhizobacteria: a sustainable alternative to improve crop yield

Abstract

In this study, the role of native plant growth-promoting rhizobacteria (PGPR) as bio-inoculants was assessed as an alternative to ameliorate Ilex paraguariensis St. Hill. growth in nursery comparing poorer (soil) versus richer (compost) substrates. Twelve rhizospheric strains isolated from yerba mate plantations were evaluated in vitro for their potential as PGPRs. Three isolates, identified as Kosakonia radicincitans YD4, Rhizobium pusense YP3, and Pseudomonas putida YP2, were selected on the basis of their N2 fixation activity, IAA-like compound and siderophore production, and phosphate solubilization. A highly significant positive effect of bio-inoculation with the native isolates was observed in 5-month-old seedlings cultivated in soil. The highest increase was observed in seedlings inoculated with K. radicincitans YD4 with an increase of 183 % in the dry shoot weight and a 30 % increase in shoot N content. In contrast, in compost, no increment in the dry weight was observed; however, an increase in content in some macronutrients in shoots was observed. Remarkably, when plant biomass was compared between soil and compost, seedlings inoculated with K. radicincitans YD4 in soil produced the highest yields, even though higher yields could be expected in compost due to the richness of this substrate. In conclusion, bio-inoculation of yerba mate seedlings with native PGPR increases the yield of this crop in nursery and could represent a promising sustainable strategy to improve yerba mate growth in low-fertility soils.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Andrade ACS, Queiroz MH, Hermes RAL, Oliveira VL (2000) Mycorrhizal status of some plants of the Araucaria forest and the Atlantic rainforest in Santa Catarina, Brazil. Mycorrhiza 10:131–136. doi:10.1007/s005720000070

    Article  Google Scholar 

  • Bashan Y, Holguin G, Luz E (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 577:521–577. doi:10.1139/W04-035

    Article  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013a) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479. doi:10.1007/s00374-012-0737-7

    CAS  Article  Google Scholar 

  • Bashan Y, Kamnev A, de-Bashan L (2013b) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2. doi:10.1007/s00374-012-0756-4

    Article  Google Scholar 

  • Bergottini V, Filippidou S, Junier T, Johnson S, Chain P, Otegui M, Zapata P, Junier P (2015) Genome sequence of Kosakonia radicincitans strain YD4, a plant growth-promoting rhizobacteria isolated from yerba mate (Ilex paraguariensis St. Hill.). Genome Announc

  • Bertrand A, Prévost D, Bigras FJ, Castonguay Y (2007) Elevated atmospheric CO2 and strain of rhizobium alter freezing tolerance and cold-induced molecular changes in alfalfa (Medicago sativa). Ann Bot 99:275–284. doi:10.1093/aob/mcl254

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P (2013) Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36:309–319. doi:10.1016/j.syapm.2013.03.005

    PubMed  Article  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brock A, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65:661–670. doi:10.1007/s00248-012-0146-3

    CAS  PubMed  Article  Google Scholar 

  • Castric KF, Castric PA (1983) Method for rapid detection of cyanogenic bacteria. Appl Environ Microbiol 45:701–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    CAS  Article  Google Scholar 

  • Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511

    CAS  Article  Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738. doi:10.1007/s00374-010-0480

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi:10.1128/AEM. 71.9.4951-4959.2005

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    CAS  Article  Google Scholar 

  • Döbereiner J (1980) Forage grasses and grain crops. In: Bergersen F (ed) Methods for evaluating biological nitrogen fixation, New York J. pp 535–555

  • Eibl B, Fernandez RA, Kozarik JC, Lupi A, Montagnini F, Nozzi D (2000) Agroforestry systems with Ilex paraguariensis (American holly or yerba mate) and native timber trees on small farms in Misiones, Argentina. Agrofor Syst 48:1–8. doi:10.1023/A:1006299920574

    Article  Google Scholar 

  • Fages J, Arsac JF (1991) Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant Soil 137:87–90. doi:10.1007/BF02187437

    Article  Google Scholar 

  • Fernandez R, Montagnini F, Hamilton H (1997) The influence of native tree species on soil chemistry in a subtropical humid forest region in Argentina. J Trop For Sci 10:188–196

    Google Scholar 

  • Fox S, O’Hara G, Bräu L (2011) Enhanced nodulation and symbiotic effectiveness of Medicago truncatula when co-inoculated with Pseudomonas fluorescens WSM3457 and Ensifer (Sinorhizobium) medicae WSM419. Plant Soil 348:245–254. doi:10.1007/s11104-011-0959-8

    CAS  Article  Google Scholar 

  • Freitas JR, Germida JJ (1990) Plant growth promoting rhizobacteria for winter wheat. Can J Microbiol 36:265–272. doi:10.1139/m90-046

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:1–15. doi:10.6064/2012/963401

    Article  Google Scholar 

  • Heck CI, De Mejia EG (2007) Yerba Mate Tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72:R138–R151. doi:10.1111/j.1750-3841.2007.00535

    CAS  PubMed  Article  Google Scholar 

  • Ilany T, Ashton M, Montagnini F, Martinez C (2010) Using agroforestry to improve soil fertility: effects of intercropping on Ilex paraguariensis (yerba mate) plantations with Araucaria angustifolia. Agrofor Syst 80:399–409. doi:10.1007/s10457-010-9317-8

    Article  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209. doi:10.1016/S0378-4290(99)00087-8

    Article  Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55:1939–1945. doi:10.1093/Jxb/Erh176

    CAS  PubMed  Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant-growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886. doi:10.1038/286885a0

    CAS  Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44. doi:10.1016/0167-7799(89)90057-7

    Article  Google Scholar 

  • Liesack W, Weyland H, Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb Ecol 21:191–198. doi:10.1007/Bf02539153

    CAS  PubMed  Article  Google Scholar 

  • Mader P, Kaiser F, Adholeya A, Sing R, Uppal H, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri B, Fried P (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43:609–619. doi:10.1016/j.soilbio.2010.11.031

    CAS  Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee JS, Saravanan VS, Lee KC, Santhanakrishnan P (2010) Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. Int J Syst Evol Microbiol 60:1559–1564. doi:10.1099/ijs. 0.013664-0

    CAS  PubMed  Article  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117. doi:10.1139/cjm-47-2-110

    CAS  PubMed  Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5

    CAS  Article  Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic-relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel-electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172. doi:10.1007/Bf02529967

    CAS  PubMed  Article  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. doi:10.1111/j.1574-6968.1999.tb13383

    CAS  PubMed  Article  Google Scholar 

  • Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng G, Zhang W, Luo H, Xie H, Lai W, Tan Z (2009) Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. Int J Syst Evol Microbiol 59:1650–1655. doi:10.1099/ijs. 0.005967-0

    CAS  PubMed  Article  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316. doi:10.1038/nchembio.164

    CAS  PubMed  Article  Google Scholar 

  • Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225. doi:10.1016/S0065-2113(08)00404-5

    CAS  Article  Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, Teixeira KRD, Urquiaga S (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261. doi:10.1007/s11104-007-9476-1

    CAS  Article  Google Scholar 

  • Scholz-Seidel C, Ruppel S (1992) Nitrogenase- and phytohormone activities of Pantoea agglomerans in culture and their reflection in combination with wheat plants. Zentralbl Mikrobiol 147:319–328. doi:10.1016/S0232-4393(11)80395-1

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical-assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi:10.1016/0003-2697(87)90612-9

    CAS  PubMed  Article  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. doi:10.1186/2193-1801-2-587

    PubMed Central  PubMed  Article  Google Scholar 

  • Sing R, Adholeya A (2003) Interactions between arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria. Mycorrhiza News 15:16–17

    Google Scholar 

  • Smyth EM, McCarthy J, Nevin R, Khan MR, Dow JM, O’ Gara F, Doohan FM (2011) In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J Appl Microbiol 111:683–692. doi:10.1111/j.1365-2672.2011.05079

    CAS  PubMed  Article  Google Scholar 

  • Stewart WDP, Fitzgera G, Burris RH (1967) In situ studies on N2 fixation using acetylene reduction technique. Proc Natl Acad Sci U S A 58:2071–2078. doi:10.1073/pnas.58.5.2071

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Tarnawski S (2008) Rhizosphere bacterial communities associated with Lolium perenne. University of Neuchâtel, PhD thesis

  • Tarnawski S, Hamelin J, Jossi M, Aragno M, Fromin N (2006) Phenotypic structure of Pseudomonas populations is altered under elevated pCO2 in the rhizosphere of perennial grasses. Soil Biol Biochem 38:1193–1201. doi:10.1016/j.soilbio.2005.10.003

    CAS  Article  Google Scholar 

  • Witzel K, Gwinn-Giglio M, Nadendla S, Shefchek K, Ruppel S (2012) Genome sequence of Enterobacter radicincitans DSM16656T, a plant growth-promoting endophyte. J Bacteriol 194:5469. doi:10.1128/JB.01193-12

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the University of Neuchâtel and by PRASY, Instituto Nacional de la Yerba Mate (INYM). We are grateful to the Swiss Government for the Scholarship for Foreign Students and the Comité Ejecutivo de Desarrollo e Innovación Tecnológica (CEDIT), Provincia de Misiones. We thank the “Fonds des Donations” of the University of Neuchâtel for funding part of the fieldwork. We also thank the Alberto Roth Foundation where the inoculation assay was performed, Barbara Iwasita for the chemical analyses, María Victoria Salomon for providing the strain A. brasilense 245, and Sonia Tarnawski and Margarita Laczeski for their valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Junier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 24 kb)

Supplementary Table 2

(DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergottini, V.M., Otegui, M.B., Sosa, D.A. et al. Bio-inoculation of yerba mate seedlings (Ilex paraguariensis St. Hill.) with native plant growth-promoting rhizobacteria: a sustainable alternative to improve crop yield. Biol Fertil Soils 51, 749–755 (2015). https://doi.org/10.1007/s00374-015-1012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1012-5

Keywords

  • Ilex paraguariensis St. Hill. (yerba mate)
  • PGPR
  • Bio-inoculants
  • Kosakonia radicincitans