Skip to main content
Log in

Soil microbial responses over 2 years following biochar addition to a north temperate forest

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Soil microbial biomass, activity, and community composition were studied 1 and 2 years after biochar, phosphorus (P), and biochar + P additions to the soil of a north temperate, mixed-deciduous, P-limited forest in Central Ontario, Canada. Biochar was pyrolyzed on site from sugar maple and white spruce sawdust at ca. 400 °C, and P was added as triple superphosphate. Biochar additions of 5 t ha−1 (approximately 0.4 to 1 kg P ha−1) had minor effects on bacterial and fungal community composition, fungi/bacteria ratios, microbial biomass, and microbial C mineralization, with significant changes only being detected in the organic layer for additions of maple biochar. In contrast, additions of 200 kg P ha−1 did alter soil chemical properties and reduced both microbial biomass and fungi/bacteria ratios. We conclude that biochar addition at 5 t ha−1 is neither beneficial nor toxic to the soil microbes in a northern hardwood forest on acidic soils, suggesting that biochar amendments can be used to sequester C without adversely affecting the soil microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938. doi:10.1111/j.1462-2920.2005.00959.x

    Article  PubMed  Google Scholar 

  • Ameloot N, Graber ER, Verheijen FGA, De Neve S (2013) Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 64:379–390. doi:10.1111/ejss.12064

    Article  CAS  Google Scholar 

  • Anders E, Watzinger A, Rempt F, Kitzler B, Wimmer B, Zehetner F, Stahr K, Zechmeister-Boltenstern S, Soja G (2013) Biochar affects the structure rather than the total biomass of microbial communities in temperate soils. Agric Food Sci 22:404–423

    Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214. doi:10.1111/gcbb.12037

    Article  CAS  Google Scholar 

  • Bissett A, Richardson AE, Baker G, Kirkegaard J, Thrall PH (2013) Bacterial community response to tillage and nutrient additions in a long-term wheat cropping experiment. Soil Biol Biochem 58:281–292. doi:10.1016/j.soilbio.2012.12.002

    Article  CAS  Google Scholar 

  • Blanes MC, Emmett BA, Viñegla B, Carreira JA (2012) Alleviation of P limitation makes tree roots competitive for N against microbes in a N-saturated conifer forest: a test through P fertilization and 15N labelling. Soil Biol Biochem 48:51–59. doi:10.1016/j.soilbio.2012.01.012

  • Casson NJ, Eimers MC, Watmough SA (2012) An assessment of the nutrient status of sugar maple in Ontario: indications of phosphorus limitation. Environ Monit Assess 184:5917–5927

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Liu X, Zheng J, Zhang B, Lu H, Chi Z, Pan G, Li L, Zheng J, Zhang X, Wang J, Yu X (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44. doi:10.1016/j.apsoil.2013.05.003

    Article  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–453. doi:10.2136/sssaj2005.0096

    Article  CAS  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ (2009) Chapter 14: Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 251–270

    Google Scholar 

  • Domene X, Mattana S, Hanley K, Enders A, Lehmann J (2014) Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol Biochem 72:152–162. doi:10.1016/j.soilbio.2014.01.035

    Article  CAS  Google Scholar 

  • Farrell M, Macdonald LM, Butler G, Chirino-Valle I, Condron L (2014) Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol Fertil Soils 50:169–178. doi:10.1007/s00374-013-0845-z

    Article  CAS  Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120. doi:10.1128/AEM. 71.7.4117-4120.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez JD, Denef K, Stewart CE, Zheng J, Cotrufo MF (2014) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65:28–39. doi:10.1111/ejss.12097

    Article  CAS  Google Scholar 

  • Gradowski T, Thomas SC (2006) Phosphorus limitation of sugar maple growth in central Ontario. For Ecol Manag 226:104–109. doi:10.1016/j.foreco.2005.12.062

    Article  Google Scholar 

  • Gradowski T, Thomas SC (2008) Responses of Acer saccharum canopy trees and saplings to P, K and lime additions under high N deposition. Tree Physiol 28:173–185. doi:10.1093/treephys/28.2.173

    Article  CAS  PubMed  Google Scholar 

  • Grossman JM, O’Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60:192–205. doi:10.1007/s00248-010-9689-3

    Article  CAS  PubMed  Google Scholar 

  • Högberg MN, Yarwood SA, Myrold DD (2014) Fungal but not bacterial soil communities recover after termination of decadal nitrogen additions to boreal forest. Soil Biol Biochem 72:35–43. doi:10.1016/j.soilbio.2014.01.014

    Article  Google Scholar 

  • Jin H (2010) Characterization of microbial life colonizing biochar and biochar-amended soils. PhD Dissertation, Cornell University

  • Jones DL, Murphy DV, Khalid M, Ahmad E, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731. doi:10.1016/j.soilbio.2011.04.018

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. doi:10.1016/j.soilbio.2011.10.012

    Article  CAS  Google Scholar 

  • Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392. doi:10.1016/j.soilbio.2010.11.005

    Article  CAS  Google Scholar 

  • Kluber LA, Carrino-Kyker SR, Coyle KP, DeForest JL, Hewins CR, Shaw AN, Smemo KA, Burke DJ (2012) Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests. PLoS ONE 7:e48946. doi:10.1371/journal.pone.0048946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173. doi:10.2136/sssaj2008.0232

    Article  CAS  Google Scholar 

  • Kolton M, Harel YM, Pasternak Z, Graber ER, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77:4924–4930. doi:10.1128/AEM. 00148-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komsta L (2011) Outliers: test for outliers

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier

  • Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems: a review. Mitig Adapt Strateg Glob Chang 11:395–419

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota: a review. Soil Biol Biochem 43:1812–1836. doi:10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  • Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314. doi:10.1016/j.soilbio.2011.07.020

    Article  CAS  Google Scholar 

  • Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015) Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem 81:244–254. doi:10.1016/j.soilbio.2014.11.017

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3:313–339. doi:10.3390/agronomy3020313

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package

  • Peng Y, Thomas SC (2006) Soil CO2 efflux in uneven-aged managed forests: temporal patterns following harvest and effects of edaphic heterogeneity. Plant Soil 289:253–264. doi:10.1007/s11104-006-9133-0

    Article  CAS  Google Scholar 

  • Peng Y, Thomas SC (2010) Influence of non-nitrogenous soil amendments on soil CO2 efflux and fine root production in an N-saturated northern hardwood forest. Ecosystems 13:1145–1156. doi:10.1007/s10021-010-9379-5

    Article  CAS  Google Scholar 

  • Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702. doi:10.1007/s00374-013-0884-5

    Article  CAS  Google Scholar 

  • Quilliam RS, Marsden KA, Gertler C, Rousk J, DeLuca TH, Jones DL (2012) Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agric Ecosyst Environ 158:192–199. doi:10.1016/j.agee.2012.06.011

    Article  CAS  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596. doi:10.1128/AEM. 02775-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. doi:10.1038/ismej.2010.58

    Article  PubMed  Google Scholar 

  • Rousk J, Dempster DN, Jones DL (2013) Transient biochar effects on decomposer microbial growth rates: evidence from two agricultural case-studies. Eur J Soil Sci 64:770–776. doi:10.1111/ejss.12103

    Article  CAS  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Sackett TE, Basiliko N, Noyce GL, Winsborough C, Schurman J, Ikeda C, Thomas SC (2014) Soil and greenhouse gas responses to biochar addition in a temperate hardwood forest. GCB Bioenergy. doi:10.1111/gcbb.12211

    Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48:516–525

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. In: Sparks DL (ed) Advances in agronomy. Academic Press, London, pp 47–82

    Google Scholar 

  • Song Y, Zhang X, Ma B, Chang SX, Gong J (2014) Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biol Fertil Soils 50:321–332. doi:10.1007/s00374-013-0857-8

    Article  CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310. doi:10.1016/j.soilbio.2009.03.016

    Article  CAS  Google Scholar 

  • Thomas SC (2013) Biochar and its potential in Canadian forestry. Silvic Mag 2013:4–6

    Google Scholar 

  • Van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150. doi:10.1111/j.1365-2745.2009.01570.x

    Article  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  • Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wakelin SA, Gregg AL, Simpson RJ, Li GD, Riley IT, McKay AC (2009) Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia 52:237–251. doi:10.1016/j.pedobi.2008.10.001

    Article  CAS  Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson M-C (1998) The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426. doi:10.1007/s004420050536

    Article  Google Scholar 

  • West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosyst Environ 108:145–154. doi:10.1016/j.agee.2005.01.002

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179. doi:10.1016/j.soilbio.2011.02.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project came from a NSERC Strategic Projects Grant to S. Thomas, N. Basiliko, and others and graduate fellowship support from the University of Toronto to G. Noyce. Haliburton Forest and Wildlife Reserve graciously allowed site access and provided subsidized field lodging as well as personnel, equipment, and feedstock for biochar synthesis. We thank Kira Borden, Owen Brokenshire, Malcom Cockwell, Matt Garmon, Maciej Jamrozic, Kaitlyn Loukes, Leo Rocca, Jonathan Schurman, and Carolyn Winsborough for the assistance with setting up the plots and pyrolyzing the biochar and Chihiro Ikeda for assistance with 2012 lab work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genevieve L. Noyce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noyce, G.L., Basiliko, N., Fulthorpe, R. et al. Soil microbial responses over 2 years following biochar addition to a north temperate forest. Biol Fertil Soils 51, 649–659 (2015). https://doi.org/10.1007/s00374-015-1010-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1010-7

Keywords

Navigation