Skip to main content

Advertisement

Log in

Biochar alters nitrogen transformations but has minimal effects on nitrous oxide emissions in an organically managed lettuce mesocosm

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We investigated the effect of biochar type on plant performance and soil nitrogen (N) transformations in mesocosms representing an organic lettuce (Lactuca sativa) production system. Five biochar materials were added to a silt loam soil: Douglas fir wood pyrolyzed at 410 °C (W410), Douglas fir wood pyrolyzed at 510 °C (W510), pine chip pyrolyzed at 550 °C (PC), hogwaste wood pyrolyzed between 600 and 700 °C (SWC), and walnut shell gasified at 900 °C (WS). Soil pH and cation exchange capacity were significantly increased by WS biochar only. Gross mineralization increased in response to biochar materials with high H/C ratio (i.e., W410, W510, and SWC), which can be favorable for organic farming systems challenged by insufficient N mineralization during plant growth. Net nitrification was increased by W510, PC, and WS without correlating with the abundance of ammonia oxidizing gene (amoA). Increases in N transformation rates did not translate into increases in plant productivity or leaf N content. WS biochar increased the abundance of amoA and nitrite reductase gene (nirK), while SWC biochar decreased the abundance of amoA and nitrous oxide gene (nosZ). Decreases in N2O emissions were only observed in soil amended with W510 for 3 days out of the 42-day growing season without affecting total cumulative N2O fluxes. This suggests that effects of biochar on decreasing N2O emissions may be transient, which compromise biochar’s potential to be used as a N2O mitigation strategy in organic systems. Overall, our results confirm that different biochar materials can distinctively affect soil properties and N turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ASTM E 1755 – 95 (1995) Standard test method for ash in biomass. Ann Book ASTM Stand 11(05):1243

    Google Scholar 

  • Barraclough D (1991) The use of mean pool abundances to interpret 15N tracer experiments. Plant Soil 131:89–96

    CAS  Google Scholar 

  • Bruun EW, Hauggaard-Nielsen H, Ibrahim N, Egsgaard H, Ambus P, Jensen PA, Dam-Johansen K (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 35:1182–1189

    Article  CAS  Google Scholar 

  • Castaldi S, Riondino M, Baronti S, Esposito FR, Marzaioli R, Rutigliano FA, Vaccari FP, Migglieta F (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 85:1464–1471

    Article  CAS  PubMed  Google Scholar 

  • Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3:1732

    Article  PubMed Central  PubMed  Google Scholar 

  • Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008a) Using poultry litter biochars as soil amendments. Soil Res 46:437–444

    Article  Google Scholar 

  • Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008b) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629–634

    Article  Google Scholar 

  • Clough TJ, Bertram JE, Ray J, Condron LM, O'Callaghan M, Sherlock RR, Wells N (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci Soc Am J 74:852–860

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293

    Article  CAS  Google Scholar 

  • Doane TA, Horwáth WR (2003) Spectrophotometric determination of nitrate with a single reagent. Anal Lett 36:2713–2722

    Article  CAS  Google Scholar 

  • Forster JC (1995) Soil nitrogen. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, San Diego, pp 79–87

    Google Scholar 

  • Gaskin J, Steiner C, Harris K, Das K, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51:2061–2069

    Article  Google Scholar 

  • Guerrero M, Ruiz M, Alzueta M, Bilbao R, Millera A (2005) Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. J Anal Appl Pyrol 74:307–314

    Article  CAS  Google Scholar 

  • Hammes K, Smernik RJ, Skjemstad JO, Schmidt MW (2008) Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Appl Geochem 23:2113–2122

    Article  CAS  Google Scholar 

  • Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirKgene targeted real-time PCR. J Microbiol Methods 59:327–335

    Article  CAS  PubMed  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchinson G, Mosier A (1981) Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci Soc Am J 45:311–316

    Article  CAS  Google Scholar 

  • Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L (2006) Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol 72:5957–5962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Kong A, Hristova K, Scow K, Six J (2010) Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol Biochem 42:1523–1533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krull E, Baldock JA, Skjemstad J, Smernik R (2009) Characteristics of biochar: organo-chemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 53–66

    Google Scholar 

  • Li J, Zepeda L, Gould BW (2007) The demand for organic food in the US: an empirical assessment. J Food Distrib Res 38:54–69

    Google Scholar 

  • Montzka S, Dlugokencky E, Butler J (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Zimmerman AR (2013) Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 193:122–130

    Article  Google Scholar 

  • Mukome FN, Zhang X, Silva LC, Six J, Parikh SJ (2013) Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem 61:2196–2204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mulvaney R, Yaremych S, Khan S, Swiader J, Horgan B (2004) Use of diffusion to determine soil cation-exchange capacity by ammonium saturation. Commun Soil Sci Plant Anal 35:51–67

    Article  CAS  Google Scholar 

  • Niggli U, Slabe A, Schmid O, Halberg N, Schlüter M (2008) Vision for an Organic Food and Farming Research Agenda 2025. Organic knowledge for the future. Technology Platform Organics. Brussels/Bonn: IFOAM EU Group/ISOFAR. http://orgprints.org/13439/

  • Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pang X, Letey J (2000) Organic farming challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci Soc Am J 64:247–253

    Article  CAS  Google Scholar 

  • Piccolo MC, Neill C, Cerri CC (1994) Net nitrogen mineralization and net nitrification along a tropical forest-to-pasture chronosequence. Plant Soil 162:61–70

    Article  CAS  Google Scholar 

  • Porteous LA, Armstrong JL, Seidler RJ, Watrud LS (1994) An effective method to extract DNA from environmental samples for polymerase chain reaction amplification and DNA fingerprint analysis. Curr Microbiol 29:301–307

    Article  CAS  PubMed  Google Scholar 

  • Rogovska N, Laird D, Cruse R, Fleming P, Parkin T, Meek D (2011) Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Sci Soc Am J 75:871–879

    Article  CAS  Google Scholar 

  • Rosenstock T, Liptzin D, Six J, Tomich T (2013) Nitrogen fertilizer use in California: assessing the data, trends and a way forward. Calif Agric 67:68–79

    Article  Google Scholar 

  • Saarnio S, Heimonen K, Kettunen R (2013) Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biol Biochem 58:99–106

    Article  CAS  Google Scholar 

  • Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345:47–58

    Article  CAS  Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Article  CAS  PubMed  Google Scholar 

  • Singla A, Iwasa H, Inubushi K (2014) Effect of biogas digested slurry based-biochar and digested liquid on N2O, CO2 flux and crop yield for three continuous cropping cycles of komatsuna (Brassica rapa var. perviridis). Biol Fertil Soils 50:1201–1209

    Article  CAS  Google Scholar 

  • Song Y, Zhang X, Ma B, Chang SX, Gong J (2014) Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biol Fertil Soils 50:321–332

    Article  CAS  Google Scholar 

  • Spokas K, Koskinen W, Baker J, Reicosky D (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  PubMed  Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989

    Article  CAS  PubMed  Google Scholar 

  • Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  • Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846–1855

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JLV, Blum WE, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Suddick EC, Six J (2013) An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci Total Environ 465:298–307

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Bruun EW, Arthur E, de Jonge LW, Moldrup P, Hauggaard-Nielsen H, Elsgaard L (2014) Effects of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biol Fertil Soils 50:1087–1097

    Article  CAS  Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 50-nuclease assays. Appl Environ Microbiol 66:4605–4614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  PubMed  Google Scholar 

  • Throbäck IN (2006) Exploring denitrifying communities in the environment. Dissertation, Swedish University of Agricultural Sciences

  • Tuomisto H, Hodge I, Riordan P, Macdonald D (2012) Does organic farming reduce environmental impacts?–a meta-analysis of European research. J Environ Manag 112:309–320

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C (2010) Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res 48:555–568

    Article  Google Scholar 

  • Verhoeven E, Six J (2014) Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agric Ecosyst Environ 191:27–38

    Article  CAS  Google Scholar 

  • Wang J, Zhang M, Xiong Z, Liu P, Pan G (2011) Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol Fertil Soils 47:887–896

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    Article  CAS  PubMed  Google Scholar 

  • Willer V, Kilcher L (2012) The World of organic agriculture: statistics and emerging trends 2012. FiBL, IFOAM

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Zheng J, Stewart CE, Cotrufo MF (2012) Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J Environ Qual 41:1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded in part by the California Energy Commission. The authors appreciate the National Research Council of Brazil (CNPq) for scholarship to Pereira, E.I.P. We also would like to thank Benjamin Wilde and Silvandro Tonetto de Freitas for laboratory and greenhouse assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engil Isadora Pujol Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, E.I.P., Suddick, E.C., Mansour, I. et al. Biochar alters nitrogen transformations but has minimal effects on nitrous oxide emissions in an organically managed lettuce mesocosm. Biol Fertil Soils 51, 573–582 (2015). https://doi.org/10.1007/s00374-015-1004-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1004-5

Keywords

Navigation