Skip to main content
Log in

Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbioses with the roots of most food crops, playing a key role in soil fertility and plant nutrition and health. The beneficial activity of AMF may be positively affected by bacterial communities living associated with mycorrhizal roots, spores and extraradical hyphae. Here, we investigated the diversity of bacterial communities associated with the spores of six AMF isolates, belonging to different genera and species and maintained for several generations in pot cultures with the same host plant, under the same environmental conditions and with the same soil. The occurrence of large bacterial communities intimately associated with spores of the AMF isolates was revealed by PCR denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of DGGE bands. Cluster and canonical correspondence analysis showed that the six AMF isolates displayed diverse bacterial community profiles unrelated with their taxonomic position, suggesting that each AMF isolate recruits on its spores a different microbiota. The 48 sequenced fragments were affiliated with Actinomycetales, Bacillales, Pseudomonadales, Burkholderiales, Rhizobiales and with Mollicutes-related endobacteria (Mre). For the first time, we report the occurrence of Mre in Funneliformis coronatum and Rhizophagus intraradices and sequences related to endobacteria of Mortierella elongata in F. coronatum and Funneliformis mosseae. The bacterial species identified are known to possess diverse and specific physiological characteristics and may play multifunctional roles affecting the differential performance of AMF isolates, in terms of infectivity and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ames RN, Mihara KL, Bayne HG (1989) Chitin-decomposing actynomycetes associated with a vesicular-arbuscular mycorrhizal fungus from a calcareous soil. New Phytol 111:67–71

    Article  Google Scholar 

  • Avio L, Cristani C, Strani P, Giovannetti M (2009) Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae. Can J Microbiol 55:242–253

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj DP, Lundquist PO, Persson P, Alström S (2008a) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores. FEMS Microbiol Ecol 65:310–322

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj DP, Lundquist PO, Alström S (2008b) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501

    Article  CAS  Google Scholar 

  • Bianciotto V, Bandi CD, Minerdi M, Sironi H, Tichy V, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    PubMed Central  CAS  PubMed  Google Scholar 

  • Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil-borne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Boil Biochem 27:1445–1451

    Article  CAS  Google Scholar 

  • Citernesi AS, Fortuna P, Filippi C, Bagnoli G, Giovannetti M (1996) The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie 16:671–677

    Article  Google Scholar 

  • Cruz AF, Horii S, Ochiai S, Yasuda A, Ishii T (2008) Isolation and analysis of bacteria associated with spores of Gigaspora margarita. J Appl Microbiol 104:1711–1717

    Article  CAS  PubMed  Google Scholar 

  • Desirò A, Salvioli A, Ngonkeu EL, Mondo SJ, Epis S, Faccio A, Kaech A, Pawlowska TE, Bonfante P (2014) Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME J 8:257–270

    Article  PubMed Central  PubMed  Google Scholar 

  • Edgar RC (2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed Central  PubMed  Google Scholar 

  • Edgar RC (2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1–12

    Google Scholar 

  • Gerdermann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Giovannetti M, Avio L (2002) Biotechnology of arbuscular mycorrhizas. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology, vol. 2. Agriculture and food production 275–310

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C (2010) Fungal spore germination and pre-symbiotic mycelial growth–physiological and genetic aspects. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dorderecht, pp 3–32

    Chapter  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517

    Article  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner F-JJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Bukovska P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts—or just soil free-riders? Front Plant Sci 4:134. doi:10.3389/fpls.2013.00134

    Article  PubMed Central  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Li B, Ravnskov S, Xie G, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. Biocontrol 52:863–875

    Article  Google Scholar 

  • Long L, Zhu H, Yao Q, Ai Y (2008) Analysis of bacterial communities associated with spores of Gigaspora margarita and Gigaspora rosea. Plant Soil 310:1–9

    Article  CAS  Google Scholar 

  • MacDonald RM, Chandler MR (1981) Bacterium-like organelles in vesicular-arbuscular mycorrizal fungus Glomus caledonium. New Phytol 89:241–246

    Article  Google Scholar 

  • MacDonald RM, Chandler MR, Mosse B (1982) The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrizal fungi. New Phytol 90:659–663

    Article  Google Scholar 

  • Mayo K, Davis RE, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426–431

    Article  Google Scholar 

  • Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Riggs F, Grinberg V, Khouri H, Wackett LP, Nelson KE, Sadowsky MJ (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2:2094–2106

  • Mosse B (1970) Honey-coloured sessile Endogone spores. II. Changes in fine structure during spore development. Arch Mikrobiol 74:146–159

  • Naumann M, Schüssler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 4:862–871

    Article  PubMed  Google Scholar 

  • Njeru EM, Avio L, Bocci G, Sbrana C, Turrini A, Bàrberi P, Giovannetti M, Fritz O (2014) Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato. Biol Fertil Soils. doi:10.1007/s00374-014-0958-z

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Article  PubMed  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GL, Koslowski TT (eds) Ectomycorrhizae. Academic, New York, pp 299–343

    Chapter  Google Scholar 

  • Rillig MC, Lutgen ER, Ramsey PW, Klironomos JN, Gannon JE (2005) Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologia 49:251–259

    Article  Google Scholar 

  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato Y, Narisawa K, Tsuruta K, Umezu M, Nishizawa T, Tanaka K, Yamaguchi K, Komatsuzaki M, Ohta H (2010) Detection of Betaproteobacteria inside the Mycelium of the Fungus Mortierella elongata. Microbes Environ 25:321–324

    Article  PubMed  Google Scholar 

  • Sbrana C, Avio L, Giovannetti M (1995) The occurence of calcofluor and lectin binding polysaccharides in the outer wall of arbuscular mycorrhizal fungal spores. Mycol Res 99:1249–1252

    Article  CAS  Google Scholar 

  • Scheublin TR, Sanders IR, Keel C, van der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752–763

    Article  PubMed  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Cambridge

    Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40

    Article  CAS  PubMed  Google Scholar 

  • Walley FL, Germida JJ (1996) Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43–49

    Article  Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

  • Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183

    Article  CAS  Google Scholar 

  • Zhao L, Wu X-Q, Ye J-R, Li H, Li G-E (2014) Isolation and characterization of a mycorrhiza helper bacterium from rhizosphere soils of poplar stands. Biol Fertil Soils 50:593–601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Cristiana Sbrana for providing the AMF isolates and Dr. Luciano Avio for providing the AMF isolates and for help in statistical analyses. This work was financially supported by a University of Pisa grant (Fondi di Ateneo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Agnolucci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnolucci, M., Battini, F., Cristani, C. et al. Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fertil Soils 51, 379–389 (2015). https://doi.org/10.1007/s00374-014-0989-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0989-5

Keywords

Navigation