Abstract
Water management practices, such as midseason drainage (MD) and intermittent irrigation, are effective in reducing methane (CH4) emission from irrigated rice paddies. In a previous study in which two-year field experiments were conducted at nine sites across Japan, prolonged MD was found to reduce the seasonal total CH4 emission by 30.5 ± 6.7 % (mean ± 95 % confidence interval) compared with conventional MD without compromising rice grain yield. However, the degree of CH4 reduction by water management is dependent on prevailing weather conditions. To estimate the mean effect of prolonged MD on CH4 emission at the nine sites with rice straw application, we conducted a long-term (20 years) simulation using a process-based biogeochemistry model, the DNDC-Rice. The model adjusted using site-specific parameters was able to reproduce the measured magnitude of the total CH4 emission and the suppressive effect of prolonged MD. The number of nonrainy days during MD explained the degree of CH4 reduction for each site and all sites combined. In the simulation, mean reduction percentage was 20.1 ± 5.6 % when acceptable prolonged MD (i.e., having less than 15 % yield loss) was applied compared with conventional MD. The discrepancy of the percentage between measurement and simulation was primarily attributable to longer nonrainy days during prolonged MD at several sites in the measurement than the mean of 20-year simulation. We therefore conclude that the long-term simulation better represents the mean reduction percentage of CH4 emission by prolonged MD relative to conventional MD at the nine sites across Japan.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Babu YJ, Li C, Frolking S, Nayak DR, Adhya TK (2006) Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr Cycl Agroecosyst 74:157–174. doi:10.1007/s10705-005-6111-5
Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183. doi:10.1046/j.1365-3040.1997.d01-142.x
Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86:7203–7209. doi:10.1029/JC086iC08p07203
Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, pp 539–544
Food and Agriculture Organization (2007) FertiStat: fertilizer use statistics. http://www.fao.org/ag/agp/fertistat/index_en.htm. Accessed 1 November 2013
Fumoto T, Kobayashi K, Li C, Yagi K, Hasegawa T (2008) Revising a process-based biogeochemistry model DNDC to simulate methane emission from paddy fields under various residue managements. Glob Chang Biol 14:382–402. doi:10.1111/j.1365-2486.2007.01475.x
Fumoto T, Yanagihara T, Saito T, Yagi K (2010) Assessment of the methane mitigation potentials of alternative water regimes in rice fields using a process-based biogeochemistry model. Glob Chang Biol 16:1847–1859
Greenhouse Gas Inventory Office of Japan (GIO) (2013) 6.4. Rice cultivation (4.C.). In: GIO (ed) National greenhouse gas inventory report of Japan, pp 6.20–6.25. http://www-gio.nies.go.jp/aboutghg/nir/2013/NIR-JPN-2013-v3.0E.pdf. Accessed 1 June 2013
Holzapfel-Pschorn A, Conrad R, Seiler W (1985) Production, oxidation and emission of methane in rice paddies. FEMS Microbiol Lett 31:343–351. doi:10.1111/j.1574-6968.1985.tb01170.x
Inubushi K, Sakamoto K, Sawamoto T (2005) Properties of microbial biomass in acid soils and their turnover. Soil Sci Plant Nutr 51:605–608. doi:10.1111/j.1747-0765.2005.tb00073.x
Itoh M, Sudo S, Mori S et al (2011) Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric Ecosyst Environ 141:359–372
Kanno T, Miura Y, Tsuruta H, Minami K (1997) Methane emission from rice paddy fields in all of Japanese prefecture: relationship between emission rates and soil characteristics, water treatment and organic matter application. Nutr Cycl Agroecosyst 49:147–151. doi:10.1023/A:1009778517545
Katayanagi K, Furukawa Y, Fumoto T, Hosen Y (2012) Validation of the DNDC-rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci Plant Nutr 58:360–372
Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58:259–276. doi:10.1080/00380768.2012.682955
Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J Geophys Res 97:9759–9776. doi:10.1029/92JD00509
Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochem Cycles 8:237–254. doi:10.1029/94GB00767
Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H (2000) A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J Geophys Res 105:4369–4384. doi:10.1029/1999JD900949
Li C, Qiu J, Frolking S, Xiao S, Salas W, Moore B III, Boles S, Huang Y, Sass R (2002) Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000. Geophys Res Lett 29, GL1972. doi:10.1029/2002GL015370
Li C, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochem Cycles 18, GB1043. doi:10.1029/2003GB002045
Minamikawa K, Sakai N, Yagi K (2006) Methane emission from paddy fields and its mitigation options on a field scale. Microbes Environ 21:135–147. doi:10.1264/jsme2.21.135
Nishimura S, Sawamoto T, Akiyama H, Sudo S, Yagi K (2004) Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Global Biogeochem Cycles 18, GB2017. doi:10.1029/2003GB002207
Osozawa S (1987) Measurement of soil-gas diffusion coefficient for soil diagnosis. Soil Phys Cond Plant Growth Jpn 55:53–60, in Japanese with English summary
Penning de Vries FWT, Jansen DM, ten Berge HFM, Bakema A (eds) (1989) Simulation of ecophysiological processes of growth in several annual crops. Pudoc, Wageningen
Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi G.Y, Solomon S (2001) Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 349–416
Schütz H, Seiler W, Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–53. doi:10.1007/BF00000896
Shiratori Y, Watanabe H, Furukawa Y, Tsuruta H, Inubushi K (2007) Effectiveness of a subsurface drainage system in poorly drained paddy fields on reduction of methane emissions. Soil Sci Plant Nutr 53:387–400. doi:10.1111/j.1747-0765.2007.00171.x
Smakgahn K, Fumoto T, Yagi K (2009) Validation of revised DNDC model for methane emissions from irrigated rice fields in Thailand and sensitivity analysis of key factors. J Geophys Res Biogeosci 114, G02017. doi:10.1029/2008JG000775
Takai Y, Kamura T (1966) The mechanism of reduction in waterlogged paddy soil. Folia Microbiol 11:304–313. doi:10.1007/BF02878902
Tokida T, Fumoto T, Cheng W, Matsunami T, Adachi M, Katayanagi N, Matsushima M, Okawara Y, Nakamura H, Okada M, Sameshima R, Hasegawa T (2010) Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: impact assessment and stoichiometric evaluation. Biogeosciences 7:2639–2653. doi:10.5194/bg-7-2639-2010
Watanabe A, Takeda T, Kimura M (1999) Evaluation of origins of CH4 carbon emitted from rice paddies. J Geophys Res-Atmos 104:23623–23629. doi:10.1029/1999JD900467
Yagi K, Tsuruta H, Kanda K, Minami K (1996) Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Global Biogeochem Cycles 10:255–267. doi:10.1029/96GB00517
Yagi K, Tsuruta H, Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Nutr Cycl Agroecosyst 49:213–220. doi:10.1023/A:1009743909716
Yanai J, Sawamoto T, Oe T, Kusa K, Yamakawa K, Sakamoto K, Naganawa T, Inubushi K, Hatano R, Kosaki T (2003) Spatial variability of nitrous oxide emissions and their soil-related determining factors in an agricultural field. J Environ Qual 32:1965–1977
Zhang L, Yu D, Shi X, Weindorf DC, Zhao L, Ding W, Wang H, Pan J, Li C (2009) Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1:50,000 soil database with DNDC model. Atmos Environ 43:2737–2746
Acknowledgements
We thank Dr. Nobuko Katayanagi (NIAES, Japan) for her valuable comments regarding model validation. We also thank Mr. Yoichi Konno (Yamagata Integrated Agricultural Research Center, Japan), Mr. Satoru Ohkoshi (Fukushima Agricultural Technology Center, Japan), Dr. Yutaka Shiratori (Niigata Agricultural Research Institute, Japan), Dr. Shinobu Suga (Gifu Prefectural Agricultural Technology Center, Japan), Mr. Masaki Tsuji (Aichi Agricultural Research Center, Japan), Mr. Yasufumi Suzue (Tokushima Agriculture, Forestry, and Fishery Technology Support Center, Japan), Mr. Hiroyuki Mizukami (Kumamoto Prefectural Agricultural Research Center, Japan), and Mr. Ichirou Uezono (Kagoshima Prefectural Institute for Agricultural Development, Japan) for providing valuable information about the field experiment.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Minamikawa, K., Fumoto, T., Itoh, M. et al. Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model. Biol Fertil Soils 50, 879–889 (2014). https://doi.org/10.1007/s00374-014-0909-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00374-014-0909-8