Skip to main content
Log in

Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Recent evidence from several environments suggest that besides autotrophic ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) are also able to perform the oxidation of NH4 + to NO2 , although the relative importance of AOA in nitrification, compared to AOB, and their differential susceptibility to inhibitory compounds remains unclear. Experimental microcosms were set up to evaluate the effect of the addition of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) combined with a cattle effluent as organic fertilizer on the abundance and expression of ammonia oxidizers, denitrifiers, and non-target microbial populations using reverse transcription–real-time PCR, as well as on the diversity of metabolically active soil bacterial and archaeal communities by terminal restriction fragment length polymorphism. While no significant changes in soil mineral N concentrations or amoA gene copies could be detected between treatments, short-term changes in transcriptional activity revealed that DMPP impaired both bacterial and archaeal amoA mRNA, being significant at every time point for AOB and at one time point for AOA. Our findings revealed that, despite the different cellular biochemistry and metabolism existing between bacteria and archaea domains, DMPP exerts its inhibitory effect against both soil bacterial and archaeal ammonia-oxidizing transcriptional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barth G, von Tucher S, Schmidhalter U (2008) Effectiveness of 3,4-dimethylpyrazole phosphate as nitrification inhibitor in soil as influenced by inhibitor concentration, application form, and soil matric potential. Pedosphere 18:378–385

    Article  CAS  Google Scholar 

  • Benedetti A, Alianiello F, Dell’Abate MT (1994) A modified Stanford and Smith method for the study of the mineralization of nitrogen from organic materials. In: Neetson JJ, Hassink J (eds) Nitrogen mineralization in agricultural soils. AB-DLO, Haren

    Google Scholar 

  • Bock E, Wagner M (2006) Oxidation of inorganic nitrogen compounds as an energy source. In: Dworkin M (ed) The Prokaryotes. Springer, New York, pp 457–495

    Chapter  Google Scholar 

  • Brandt BW, Kelpin FDL, van Leeuwen IMM, Kooijman SALM (2004) Modelling microbial adaptation to changing availability of substrates. Water Res 38:1003–1013

    Article  CAS  PubMed  Google Scholar 

  • Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol Fertil Soils 17:263–268

    Article  CAS  Google Scholar 

  • Ceccherini MT, Castaldini M, Piovanelli C, Hastings RC, McCarthy AJ (1998) Effects of swine manure fertilization on autotrophic ammonia-oxidizing bacteria in soil. Appl Soil Ecol 7:149–157

    Article  Google Scholar 

  • Chen D, Helen CS, Islam A, Edis R (2010) Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem 42:660–664

    Article  CAS  Google Scholar 

  • Clark IM, Buchkina N, Jhurreea D, Goulding KWT, Hirsch PR (2012) Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk wheat experiment. Phil Trans R Soc B 367:1235–1244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dambreville C, Hallet S, Nguyen C, Morvan T, Germon JC, Philippot L (2006) Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted pig manure or ammonium nitrate. FEMS Microbiol Ecol 56:119–131

    Article  CAS  PubMed  Google Scholar 

  • Dell’Abate MT, Benedetti A, Trinchera A, Galluzzo D (2003) Nitrogen and carbon mineralisation of leather meal in soil as affected by particle size of fertiliser and microbiological activity of soil. Biol Fertil Soils 37:124–129

    Google Scholar 

  • Di HJ, Cameron KC (2004) Effects of temperature and application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate and microbial biomass in a grazed pasture soil. Aust J Soil Res 42:927–932

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC (2012) How does the application of different nitrification inhibitors affect nitrous oxide emissions and nitrate leaching from cow urine in grazed pastures? Soil Use Manag 28:54–61

    Article  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394

    Article  CAS  PubMed  Google Scholar 

  • Dittert K, Bol R, King B, Chadwick D, Hatch D (2001) Use of a novel nitrification inhibitor to reduce nitrous oxide emission from 15 N-labelled dairy slurry injected into soil. Rapid Commun Mass Spectrom 15:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Dosch P, Gutser R (1996) Reducing N losses (NH3, N2O, N2) and immobilization from slurry through optimized application techniques. Fert Res 43:165–171

    Article  Google Scholar 

  • Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and a new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felske A, Akkermans ADL (1998) Spatial homogeneity of abundant bacterial 16S rRNA molecules in grassland soil. Microb Ecol 36:31–36

    Article  CAS  PubMed  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grisi B, Grace C, Brookes PC, Benedetti A, Dell’Abate MT (1998) Temperature effect on organic matter and microbial biomass dynamics in temperate and tropical soils. Soil Biol Biochem 30:1309–1315

    Article  CAS  Google Scholar 

  • Hai B, Diallo NH, Sall S, Haesler F, Schauss K (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75:4993–5000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatch D, Trindade H, Cardenas L, Carneiro J, Hawkins J, Scholefield D, Chadwick D (2005) Laboratory study of the effects of two nitrification inhibitors on greenhouse gas emissions from slurry-treated arable soil: impact of diurnal temperature cycle. Biol Fertil Soils 41:225–232

    Article  CAS  Google Scholar 

  • Hauben L, Vauterin L, Swings J, Moore ERB (1997) Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J Sys Bacteriol 47:328–335

    Article  CAS  Google Scholar 

  • Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21

    Article  CAS  PubMed  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  • Henry S, Baudoinb E, López-Gutiérrez JC, Fabrice M-L, Braumanb A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59:327–335

    Article  CAS  PubMed  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irigoyen I, Muro J, Azpilikueta M, Aparicio-Tejo P, Lamsfus C (2003) Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures. Aust J Soil Res 41:1177–1183

    Article  CAS  Google Scholar 

  • Isermayer H (1952) Estimation of soil respiration in closed jars. In: Alef K, Nannipieri P (eds) Method in applied soil microbiology and biochemistry. Academy, London, pp 214–216

    Google Scholar 

  • Jarvis SC, Stockdale EA, Shepherd MA, Powlson DS (1996) Nitrogen mineralization in temperate agricultural soils: processes and measurement. Adv Agron 57:187–235

    Article  CAS  Google Scholar 

  • Jurgens G, Lindstrom K, Saano A (1997) Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol 63:3233–3241

    Google Scholar 

  • Kamshake LJ, Hannah SA, Comen JM (1967) Automated analysis for nitrate by hydrazine reduction. Water Resour 1:205–216

    Google Scholar 

  • Kleineidam K, Košmrlj K, Kublik S, Palmer I, Pfab H, Ruser R, Fiedler S, Schloter M (2011) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere 84:182–186

    Article  CAS  PubMed  Google Scholar 

  • Kramer SB, Reganold JP, Glover JD, Bohannan BJ, Mooney HA (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci U S A 103:4522–4527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leininger S, Urich T, Sclotter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soil. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liang X, Chen Y, Lian Y, Tian G, Ni W (2008) Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system. J Environ Sci 20:149–155

    Article  CAS  Google Scholar 

  • Linzmeier W, Gutser R, Schmidhalter U (2001) Nitrous oxide emission from soil and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP). Biol Fertil Soils 34:103–108

    Article  CAS  Google Scholar 

  • Macadam XMB, del Prado A, Merino P, Estavillo JM, Pinto M, Gonzales-Murua C (2003) Dicyandiamide and 3,4-dimethyl pyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects on clover. J Plant Physiol 160:1517–1523

    Article  CAS  PubMed  Google Scholar 

  • Macdonald CA, Singh BK, Peck JA, van Schaik AP, Hunter LC, Horswell J, Campbell CD, Speir TW (2007) Long-term exposure to Zn-spiked sewage sludge alters soil community structure. Soil Biol Biochem 39:2576–2586

    Article  CAS  Google Scholar 

  • Macdonald CA, Clark IM, Zhaoa FG, Hirsch PR, Singh BK, McGrath SP (2011) Long-term impacts of zinc and copper enriched sewage sludge additions on bacterial, archaeal and fungal communities in arable and grassland soils. Soil Biol Biochem 43:932–941

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium specific PCR primers that amplify genes coding for bacterial 16SrRNA. Appl Environ Microbiol 64:795–799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez-Alcántara B, Quiñones A, Polo C, Primo-Millo E, Legaz F (2012) Use of nitrification inhibitor DMPP to improve nitrogen uptake efficiency in citrus trees. J Agric Sci 5:1–18

    Google Scholar 

  • Menéndez S, Barrena I, Setien I, González-Murua C, Estavillo JM (2012) Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol Biochem 53:82–89

    Article  Google Scholar 

  • Merino P, Menéndez S, Pinto M, Gonzàlez-Murua C, Estavillo JM (2005) 3,4-dimethyl pyrazole phosphate reduces nitrous oxide emissions from grassland after slurry application. Soil Use Manag 21:53–57

    Article  Google Scholar 

  • Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E (2009) Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME J 3:916–923

    Article  CAS  PubMed  Google Scholar 

  • Michotey V, Mejean V, Bonin P (2000) Comparison of methods for quantification of cytochrome cd1-denitrifying bacteria in environmental marine samples. Appl Environ Microbiol 66:1564–1571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    CAS  PubMed  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan M, Gerard EM, Carter PE, Lardner R, Sarathchandra U, Burch G, Ghani A, Bell N (2010) Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol Biochem 42:1425–1436

    Article  Google Scholar 

  • Pasda G, Hähndel R, Zerulla W (2001) Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol Fertil Soils 34:85–97

    Article  CAS  Google Scholar 

  • Pereira J, Fanguiero D, Chadwick DR, Misselbrook TH, Coutinho J, Trindade H (2010) Effect of cattle slurry pre-treatment by separation and addition of nitrification inhibitors on gaseous emissions and N dynamics: a laboratory study. Chemosphere 79:620–627

    Article  CAS  PubMed  Google Scholar 

  • Pinck C, Coeur C, Potier P, Bock E (2001) Polyclonal antibodies recognizing the AmoB protein of ammonia oxidizers of the beta-subclass of the class Proteobacteria. Appl Environ Microbiol 67:118–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    Article  CAS  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption–free analysis of quantitative real-time polymerse chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker Q, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:1–12

    Article  Google Scholar 

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke BM, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456

    Article  CAS  PubMed  Google Scholar 

  • Schlegel HG (1992) Allgemeine mikrobiologie, 7th edn. Thieme Verlag, Stuttgart

    Google Scholar 

  • Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340

    Article  CAS  PubMed  Google Scholar 

  • Springer U, Klee J (1954) Pr_fung der Leistungsf_higkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlemstoffs mittels Chromschwefels_ure sowie Vorschlag einer neuen Schnellmethode. Z Pflanzenernaehr Dueng Bodenkd 64:1–7

    Article  CAS  Google Scholar 

  • Stanford G, Smith SJ (1972) Nitrogen mineralization potentials of soils. Soil Sci Soc Am Proc 36:465–472

    Article  CAS  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat K, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit Rev Plant Sci 25:303–335

    Article  CAS  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Ǻ, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  PubMed  Google Scholar 

  • Töwe S, Kleineidam K, Schloter M (2010) Differences in amplification efficiency of standard curves in quantitative real-time PCR assays and consequences for gene quantification in environmental samples. J Microbiol Methods 82:338–341

    Article  PubMed  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  CAS  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Violante P (2000) Metodi di Analisi Chimica del Suolo. Angeli, Milan

    Google Scholar 

  • Wall L, Gehrke CW, Neuner JE, Lathey RD, Rexnord PR (1975) Cereal protein nitrogen: evolution and comparison of four different methods. Assoc Off Anal Chem 58:811–817

    CAS  Google Scholar 

  • Weiske A, Benckiser G, Herbert T, Ottow J (2001) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils 34:109–117

    Article  CAS  Google Scholar 

  • Wulf S, Maeting M, Clemens J (2002) Application technique and slurry co-fermentation effects on ammonia nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions. J Environ Qual 31:1795–1801

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li X, Xu L, Hu F, Li H, Liu M (2013) Influence of the nitrification inhibitor DMPP on the community composition of ammonia-oxidizing bacteria at microsites with increasing distance from the fertilizer zone. Biol Fertil Soils 49:23–30

    Article  CAS  Google Scholar 

  • Zerulla W, Barth T, Dressel J, Erhardt K, von Locquenghien KH, Pasda G, Rädle M, Wissemeier AH (2001) 3,4-Dimethylpyrazole phosphate (DMPP)—a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils 34:79–84

    Article  CAS  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME J 6:1032–1045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.F. is funded by a Ph.D. fellowship from EuroChem Agro Spa, Italy, and Timac Agro Italia. The authors would like to thank Dr. Giovanni Mughini and the CRA-PLF (Rome) for providing soil samples. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Florio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florio, A., Clark, I.M., Hirsch, P.R. et al. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil. Biol Fertil Soils 50, 795–807 (2014). https://doi.org/10.1007/s00374-014-0897-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0897-8

Keywords

Navigation