Skip to main content
Log in

Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Viruses are highly abundant in temperate soils, ranging from 107 to 109 g−1, and outnumbering soil bacteria from 5- to over 1,000-fold. In order to determine the potential impacts of viruses on soil microbial communities, it is important to establish reliable methods for comparing changes in viral abundances within and across soil samples. The goals of this study were to optimize extraction-enumeration methods to accurately determine viral abundances in a range of soil types, to evaluate the feasibility of simultaneously enumerating bacterial cells and virus particles using a single extraction procedure, and to assess the utility of flow cytometry (FCM) for enumerating virus particles in soil extracts. Comparisons of extraction approaches indicated that sonication or blender extraction of soils with potassium citrate buffer yielded the highest viral abundances for most soil types. Combined viral and bacterial extractions underestimate abundances compared to separately-optimized extractions for each. Flow cytometric counts were anywhere between 350- and 1,400-fold higher than epifluorescence microscopy (EFM)-based counts for the same soil. Trends in viral abundance across soil types were different from those via EFM, and different relationships between viral abundance and soil properties were observed depending on the enumeration method. Thus, FCM is not currently recommended for enumeration of viruses in soil extracts. Based on EFM results, soil moisture and organic matter content were the most important factors determining viral abundance in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amalfitano S, Fazi S (2008) Recovery and quantification of bacterial cells associated with streambed sediments. J Microbiol Methods 75:237–243

    Article  PubMed  CAS  Google Scholar 

  • Amalfitano S, Fazi S, Puddu A (2009) Flow cytometric analysis of benthic prokaryotes attached to sediment particles. J Microbiol Methods 79:246–249

    Article  PubMed  Google Scholar 

  • Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Env Microbiol 69:285–289

    Article  CAS  Google Scholar 

  • Auguet JC, Montanie H, Hartmann H, Lebaron P, Casamayor EO, Catala P, Delmas D (2009) Potential effect of freshwater virus on the structure and activity of bacterial communities in the Marennes-Ol,ron Bay (France). Microb Ecol 57:295–306

    Article  PubMed  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    Article  PubMed  CAS  Google Scholar 

  • Bratbak G, Thingstad F, Heldal M (1994) Viruses and the microbial loop. Microb Ecol 28:209–221

    Article  Google Scholar 

  • Brussaard CPD, Marie D, Bratbak G (2000) Flow cytometric detection of viruses. J Virol Methods 85:175–182

    Article  PubMed  CAS  Google Scholar 

  • Colombet J, Robin A, Lavie L, Bettarel Y, Cauchie HM, Sime-Ngando T (2007) Virioplankton ‘pegylation’: use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems. J Microbiol Methods 71:212–219

    Article  PubMed  CAS  Google Scholar 

  • Courtois S, Frostegard A, Goransson P, Depret G, Jeannin P, Simonet P (2001) Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ Microbiol 3:431–439

    Article  PubMed  CAS  Google Scholar 

  • Danovaro R, Dell’anno A, Trucco A, Serresi M, Vanucci S (2001) Determination of virus abundance in marine sediments. Appl Environ Microbiol 67:1384–1387

    Article  PubMed  CAS  Google Scholar 

  • Danovaro R, Manini E, Dell’Anno A (2002) Higher abundance of bacteria than of viruses in deep Mediterranean sediments. Appl Env Microbiol 68:1468–1472

    Article  CAS  Google Scholar 

  • dos Santos Furtado AL, Casper P (2000) Different methods for extracting bacteria from freshwater sediment and a simple method to measure bacterial production in sediment samples. J Microbiol Methods 41:249–257

    Article  PubMed  Google Scholar 

  • Duhamel S, Jacquet S (2006) Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. J Microbiol Methods 64:316–332

    Article  PubMed  CAS  Google Scholar 

  • Ferris MM, Stoffel CL, Maurer TT, Rowlen KL (2002) Quantitative intercomparison of transmission electron microscopy, flow cytometry, and epifluorescence microscopy for nanometric particle analysis. Anal Biochem 304:249–256

    Article  PubMed  CAS  Google Scholar 

  • Filippini M, Buesing N, Bettarel Y, Sime-Ngando T, Gessner MO (2006) Infection paradox: high abundance but low impact of freshwater benthic viruses. Appl Env Microbiol 72:4893–4898

    Article  CAS  Google Scholar 

  • Filippini M, Middelboe M (2007) Viral abundance and genome size distribution in the sediment and water column of marine and freshwater ecosystems. FEMS Microbiol Ecol 60:397–410

    Article  PubMed  CAS  Google Scholar 

  • Fischer UR, Wieltschnig C, Kirschner AKT, Velimirov B (2006) Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms. Environ Microbiol 8:1394–1407

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    Article  PubMed  CAS  Google Scholar 

  • Glud RN, Middelboe M (2004) Virus and bacteria dynamics of a coastal sediment: implication for benthic carbon cycling. Limnol Oceanogr 49:2073–2081

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological Statistics Software Package for Education and Data Analysis. Paleontol Electron 4:9

    Google Scholar 

  • Helton RR, Liu L, Wommack KE (2006) Assessment of factors influencing direct enumeration of viruses within estuarine sediments. Appl Env Microbiol 72:4767–4774

    Article  CAS  Google Scholar 

  • Helton RR, Wang K, Kan JJ, Powell DH, Wommack KE (2012) Interannual dynamics of viriobenthos abundance and morphological diversity in Chesapeake Bay sediments. FEMS Microbiol Ecol 79:474–486

    Article  PubMed  CAS  Google Scholar 

  • Helton RR, Wommack KE (2009) Seasonal dynamics and metagenomic characterization of estuarine viriobenthos assemblages by randomly amplified polymorphic DNA PCR. Appl Env Microbiol 75:2259–2265

    Article  CAS  Google Scholar 

  • Hewson I, O'Neil JM, Fuhrman JA, Dennison WC (2001) Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr 46(7):1734–1746

    Article  Google Scholar 

  • Hopkins DW, Macnaughton SJ, O’Donnell AG (1991) A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 23:217–225

    Article  Google Scholar 

  • Jacquet S, Domaizon I, Personnic S, Sime-Ngando T (2007) Do small grazers influence virus-induced mortality of bacteria in Lake Bourget (France)? Fundam Appl Limnol 170:125–132

    Article  Google Scholar 

  • Li D, He M, Jiang SC (2010) Detection of infectious adenoviruses in environmental waters by fluorescence-activated cell sorting assay. Appl Env Microbiol 76:1442–1448

    Article  CAS  Google Scholar 

  • Lindahl V, Bakken LR (1995) Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol 16:135–142

    Article  CAS  Google Scholar 

  • Mann NH (2005) The third age of phage. PLoS Biol 3:e182

    Article  PubMed  Google Scholar 

  • Maranger R, Bird DF (1996) High concentrations of viruses in the sediments of Lac Gilbert, Quebec. Microb Ecol 31:141–151

    Google Scholar 

  • Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Env Microbiol 65:45–52

    CAS  Google Scholar 

  • Maron PA, Schimann H, Ranjard L, Brothier E, Domenach AM, Lensi R, Nazaret S (2006) Evaluation of quantitative and qualitative recovery of bacterial communities from different soil types by density gradient centrifugation. Eur J Soil Biol 42:65–73

    Article  Google Scholar 

  • Middelboe M, Jorgensen NOG, Kroer N (1996) Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl Env Microbiol 62:1991–1997

    CAS  Google Scholar 

  • Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  • Noble RT, Fuhrman JA (2000) Rapid virus production and removal as measured with fluorescently labeled viruses as tracers. Appl Env Microbiol 66:3790–3797

    Article  CAS  Google Scholar 

  • Parada V, Sintes E, van Aken HM, Weinbauer MG, Herndl GJ (2007) Viral abundance, decay, and diversity in the meso- and bathypelagic waters of the North Atlantic. Appl Env Microbiol 73:4429–4438

    Article  CAS  Google Scholar 

  • Paul JH, Rose JB, Jiang SC, Kellogg CA, Dickson L (1993) Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl Env Microbiol 59:718–724

    Google Scholar 

  • Personnic S, Domaizon I, Dorigo U, Berdjeb L, Jacquet S (2009) Seasonal and spatial variability of virio-, bacterio-, and picophytoplanktonic abundances in three peri-alpine lakes. Hydrobiologia 627:99–116

    Article  Google Scholar 

  • Sawstrom C, Ask J, Karlsson J (2009) Viruses in subarctic lakes and their impact on benthic and pelagic bacteria. FEMS Microbiol Ecol 70:471–482

    Article  PubMed  Google Scholar 

  • Shibata A, Goto Y, Saito H, Kikuchi T, Toda T, Taguchi S (2006) Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat Microb Ecol 43:223–231

    Article  Google Scholar 

  • Sime-Ngando T, Ram ASP (2005) Grazer effects on prokaryotes and viruses in a freshwater microcosm experiment. Aquat Microb Ecol 41:115–124

    Article  Google Scholar 

  • Suttle CA, Chan AM, Cottrell MT (1991) Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Appl Environ Microbiol 57:721–726

    PubMed  CAS  Google Scholar 

  • Swanson MM, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M (2009) Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann Appl Biol 155:51–60

    Article  Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Article  Google Scholar 

  • Thomas R, Berdjeb L, Sime-Ngando T, Jacquet S (2011) Viral abundance, production, decay rates and life strategies (lysogeny versus lysis) in Lake Bourget (France). Environ Microbiol 13:616–630

    Article  PubMed  CAS  Google Scholar 

  • Tijdens M, Hoogveld HL, Kamst-van Agterveld MP, Simis SGH, Baudoux AC, Laanbroek HJ, Gons HJ (2008) Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic lake. Microb Ecol 56:29–42

    Article  PubMed  Google Scholar 

  • Tomaru Y, Nagasaki K (2007) Flow cytometric detection and enumeration of DNA and RNA viruses infecting marine eukaryotic microalgae. J Oceanogr 63:215–221

    Article  CAS  Google Scholar 

  • Wang YY, Hammes F, De Roy K, Verstraete W, Boon N (2010) Past, present and future applications of flow cytometry in aquatic microbiology. Trends Biotechnol 28:416–424

    Article  PubMed  CAS  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  PubMed  CAS  Google Scholar 

  • Weinbauer MG, Höfle MG (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Env Microbiol 64:431–438

    CAS  Google Scholar 

  • Wen K, Ortmann AC, Suttle CA (2004) Accurate estimation of viral abundance by epifluorescence microscopy. Appl Env Microbiol 70:3862–3867

    Article  CAS  Google Scholar 

  • Williamson KE (2011) Soil phage ecology: abundance, distribution, and interactions with bacterial hosts. In: Witzany G (ed) Biocommunication in soil microorganisms. Springer, Berlin, pp 113–136, Soil Biology 23

    Chapter  Google Scholar 

  • Williamson KE, Srninvasiah S, Wommack KE (2011a) Viruses in soil ecosystems. In: Haung PM, Li Y, Sumner ME (eds) Handbook of soil sciences, 2nd edn. CRC Press, New York, p Ch. 24

    Google Scholar 

  • Williamson KE, Kan J, Polson SW, Williamson SJ (2011b) Optimizing the indirect extraction of prokaryotic DNA from soils. Soil Biol Biochem 43:736–748

    Article  CAS  Google Scholar 

  • Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574

    Article  PubMed  CAS  Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Env Microbiol 71:3119–3125

    Article  CAS  Google Scholar 

  • Williamson KE, Wommack KE, Radosevich M (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Env Microbiol 69:6628–6633

    Article  CAS  Google Scholar 

  • Williamson SJ, Houchin LA, McDaniel L, Paul JH (2002) Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl Env Microbiol 68:4307–4314

    Article  CAS  Google Scholar 

  • Winget DM, Helton RR, Williamson KE, Bench SR, Williamson SJ, Wommack KE (2011) Repeating patterns of virioplankton production within an estuarine ecosystem. Proc Nat Acad Sci USA 108:11506–11511

    Article  PubMed  CAS  Google Scholar 

  • Winget DM, Wommack KE (2008) Randomly amplified polymorphic DNA PCR as a tool for assessment of marine viral richness. Appl Env Microbiol 74:2612–2618

    Article  CAS  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  PubMed  CAS  Google Scholar 

  • Wommack KE, Ravel J, Hill RT, Colwell RR (1999) Population dynamics of Chesapeake Bay virioplankton: total community analysis using pulsed field gel electrophoresis. Appl Env Microbiol 65:231–240

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Brent J. Callaway and Kimy A. Javier for assistance with field sampling and collecting environmental data, and Elizabeth L. Adams and Kirk J. Czymmek for expert advice on flow cytometry. Thanks also to Matt Saxton for reading the manuscript. This work was supported by a grant to KEW from the Jeffress Memorial Trust (J-988), a Cummings Memorial Summer Scholarship to KAC, and a core facility grant to RRH and KEW by the National Science Foundation EPSCoR (grant no. EPS-081425) from the National Center for Research Resources.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt E. Williamson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Comparison of sample dilutions and heating treatment prior to flow cytometric analysis. Not all treatments were performed for all soils. Open bars, forest soil; stippled bars, wetland soil; hatched bars, clay soil; light grey bars, dune sand; dark grey bars, wildflower soil. Error bars indicate SD (n = 6) (JPEG 37 kb)

High Resolution Image

(TIFF 952 kb)

Figure S2

Principal components analysis of variation in soil viral abundance based on EFM. VA, viral abundance; CEC, cation exchange capacity; %W, gravimetric water content; %OM, percent organic matter (JPEG 148 kb)

High Resolution Image

(TIFF 3433 kb)

Figure S3

Principal components analysis of variation in soil viral abundance based on FCM. VA, viral abundance; CEC, cation exchange capacity; %W, gravimetric water content; %OM, percent organic matter (JPEG 159 kb)

High Resolution Image

(TIFF 3433 kb)

Figure S4

Comparison of FCM and EFM for enumeration of phage T4. Error bars indicate range (n = 3) (JPEG 9 kb)

High Resolution Image

(TIFF 3481 kb)

Figure S5

Example epifluorescence micrographs. All extracts were filtered through 0.22 μm prior to staining with SYBR Gold. a, b Forest soil blender extraction with potassium citrate buffer; c, d, Forest soil blender extraction with sodium deoxycholate. Scale bars indicate 20 μm. Virus particles appear as small, bright, symmetrical points (indicated by arrows), whereas background debris is generally amorphous and variable in fluorescence intensity (JPEG 1362 kb)

High Resolution Image

(TIFF 21843 kb)

Figure S6

Typical flow cytograms of Forest soil, blender extraction with potassium citrate buffer; extracts were filtered through 0.22 μm prior to staining with SYBR Gold. a Soil extract without dilution; b, soil extract with 1:250 dilution; c, soil extract with heat treatment and 1:250 dilution (JPEG 44 kb)

High Resolution Image

(TIFF 6873 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, K.E., Corzo, K.A., Drissi, C.L. et al. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol Fertil Soils 49, 857–869 (2013). https://doi.org/10.1007/s00374-013-0780-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0780-z

Keywords

Navigation