Biology and Fertility of Soils

, Volume 49, Issue 5, pp 575–585 | Cite as

Wood ash effects on chemical and microbiological properties of digestate- and manure-amended soils

  • M. Fernández-Delgado JuárezEmail author
  • S. Waldhuber
  • A. Knapp
  • C. Partl
  • M. Gómez-Brandón
  • H. Insam
Original Paper


A field study was carried out to evaluate the potential of wood ash as a fertilizer in grassland systems in combination with enriched N organic wastes. Six treatments including manure or digestate, each combined with wood ash at 0, 1, and 3 t ha−1 were spread onto the soil to an amount equivalent to 120 kg N ha−1. Three soil samplings and one cutting was carried out within one growing season (3 months). A higher pH value was found in manure-treated plots, the pH rise being proportional to the amount of wood ash added. Those plots amended with digestate were characterized by a larger content of total C, NH4 +, and total P (TP) regardless of the amount of ashes. Microbial activity, assessed by basal respiration and microbial biomass carbon of the differently treated soils, was not affected neither by the nature of the organic waste nor by the amount of wood ash added. However, amending soil with digestate resulted in a more efficient soil microbial community, as shown by the lower values of the metabolic quotient. Such effects were accompanied by a higher percentage of plant cover, particularly of leguminous plants in digestate-treated plots. The time of sampling (seasonal effects) was found to influence the soil pH and electrical conductivity (EC), as well as the nutrient content (total N, NH4 +, and NO3 ). Overall, the combined use of wood ash and biogas digestate can constitute an efficient way for the disposal and recycling of both products and additionally, it may constitute an environmentally friendly alternative to mineral fertilizers for acid soils.


Renewable energy resources Cattle manure Grasslands Inorganic P Metabolic quotient Plant cover 



This research was supported by the K-Regio Center BioTreaT (Biological Treatment and Recycling Technologies). Marina Fernández-Delgado Juárez is in receipt of a PhD fellowship from Nachwuchsförderung from the University of Innsbruck. María Gómez Brandón is financially supported by a postdoctoral research grant from Fundación Alfonso Martín Escudero. The authors thank Skiliftzentrum Gerlos for providing a trial area and the Österreichische Bundesforste A.G. for their kind cooperation. They also acknowledge Paul Fraiz for his highly valuable help in language editing.


  1. Al Seadi T, Lukerhurst C (2012) Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy, Task 37—Energy from Biogas, May 2012. <>
  2. Alburquerque JA, de la Fuente C, Bernal MP (2011) Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agr Ecosyst Environ. doi: 10.1016/j.agee.2011.03.007
  3. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221CrossRefGoogle Scholar
  4. Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395CrossRefGoogle Scholar
  5. Asimi S, Gianinazzi-Pearson V, Gianinazzi S (1980) Influence of increasing soil phosphorus levels on interactions between vesicular–arbuscular mycorrhizae and Rhizobium in soybeans. Can J Bot 58:2200–2205CrossRefGoogle Scholar
  6. Augusto L, Bakker MR, Meredieu C (2008) Wood ash applications to temperate forest ecosystems—potential benefits and drawbacks. Plant Soil 306:181–198CrossRefGoogle Scholar
  7. Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol 100:5444–5453PubMedCrossRefGoogle Scholar
  8. BMLFUW (2006) Richtlinien für die Sachgerechte Düngung (Austrian Fertilizing Guidelines). duengung/Bodenschutz.html. Accessed on 7 September 2012
  9. BMLFUW (2007) Der Sachgerechte Einsatz von Biogasgülle und Gärrückständen im Acker und Grünland. (Guidance of the Austrian Agriculture Ministry for the adequate Use of Biogas residues and anaerobically digested slurries in agriculture). . Accessed on 7 September 2012
  10. Bougnom BP, Insam H (2009) Ash additives to compost affect soil microbial communities and apple seedling growth. Die Bodenkultur 60:5–15Google Scholar
  11. Bougnom BP, Mair J, Etoa FX, Insam H (2009) Composts with wood ash addition: a risk or a chance for ameliorating acid tropical soils? Geoderma 153:402–407CrossRefGoogle Scholar
  12. Bougnom BP, Knapp BA, Elhottova D, Koubova A, Etoa FX, Insam H (2010) Designer compost with biomass ashes for ameliorating acid tropical soils: effects on the soil microbiota. Appl Soil Ecol 45:319–324CrossRefGoogle Scholar
  13. Bougnom BP, Niederkofler C, Knapp BA, Stimpfl E, Insam H (2012) Residues from renewable energy production: their value for fertilizing pastures. Biomass Bioenerg 39:290–295CrossRefGoogle Scholar
  14. Canellas LP, Espindola JAA, Guerra JGM, Teixeira MG, Velloso ACX, Rumjanek VM (2004) Phosphorus analysis in soil under herbaceous perennial leguminous cover by nuclear magnetic spectroscopy. Pesqu Agropecu Bras 39:589–596CrossRefGoogle Scholar
  15. Demetz M, Insam H (1999) Phosphorus availability in a forest soil determined with a respiratory assay compared to chemical methods. Geoderma 89:259–271CrossRefGoogle Scholar
  16. Demeyer A, Voundi Nkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–295PubMedCrossRefGoogle Scholar
  17. Dilly O, Munch JC (1998) Ratios between estimates of microbial biomass content and microbial activity in soils. Biol Fertil Soils 27:374–379CrossRefGoogle Scholar
  18. DIN-EN-1483 (2007) Water quality—determination of mercury—method using atomic absorption spectrometryGoogle Scholar
  19. Dinesh R, Srinivasan V, Hamza S, Manjusha A (2010) Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour Technol 101:4697–4702PubMedCrossRefGoogle Scholar
  20. DIN-ISO-14869-1 (2001) Dissolution for the determination of total element content—part 1: dissolution with hydrofluoric and perchloric acidsGoogle Scholar
  21. European Commission (2010) Commission adopts biomass sustainability report. Accessed 3 July 2012
  22. Ferreiro A, Merino A, Díaz N, Piñeiro J (2011) Improving the effectiveness of wood-ash fertilization in mixed mountain pastures. Grass Forag Sci 66:337–350CrossRefGoogle Scholar
  23. Ferreras L, Gomez E, Toresani S, Firpo I, Rotondo R (2006) Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil. Bioresour Technol 97:635–640PubMedCrossRefGoogle Scholar
  24. Fritze H, Smolander A, Levula T, Kitunen V, Malkonen E (1994) Wood-ash fertilization and fire treatments in a Scots Pine forest stand—effects on the organic layer, microbial biomass, and microbial activity. Biol Fertil Soils 17:57–63CrossRefGoogle Scholar
  25. Gering C, Heil B, Lamersdorf NP (2000) Wood ash application in a Norway spruce forest at solling, Central Germany. In: Proceedings of the International Conference on Forest Ecosystem Restoration, Vienna, pp 322–324Google Scholar
  26. Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Agric Ecosyst Environ 37:877–887Google Scholar
  27. Goberna M, Podmirseg SM, Waldhuber S, Knapp BA, García C, Insam H (2011) Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure. Appl Soil Ecol 49:18–25CrossRefGoogle Scholar
  28. Heinemeyer O, Insam H, Kaiser E, Walenzik G (1989) Soil microbial biomass and respiration measurements—an automated technique based on infra-red gas analysis. Plant Soil 116:191–195CrossRefGoogle Scholar
  29. Herrero J, Pérez-Coveta O (2005) Soil salinity changes over 24 years in a Mediterranean irrigated district. Geoderma 125:287–308CrossRefGoogle Scholar
  30. Holm-Nielsen JB, Seado TA, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484PubMedCrossRefGoogle Scholar
  31. Holzner H (1999) Die Verwendung aus Biomassefeuerungen zur Düngung von Acker- und Gründland. Universität für Bodenkultur, Doctoral Thesis pp 115Google Scholar
  32. Insam H, de Bertoldi M (2007) Microbiology of the composting process. In: Diaz LF, de Bertoldi M, Bidlingmaier W, Stentiford E (Eds) Compost science and technology. Waste Management Series 8, Elsevier, pp 25-48Google Scholar
  33. Insam H, Merschak P (1997) Nitrogen leaching from forest soil cores after amending organic recycling products and fertilizers. Waste Manag Res 15:277–292Google Scholar
  34. Insam H, Wett B (2008) Control of GHG emission at the microbial community level. Waste Manage 28:699–706CrossRefGoogle Scholar
  35. Insam H, Mitchell CC, Dormaar JF (1991) Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biol Biochem 23:459–464CrossRefGoogle Scholar
  36. Insam H, Franke-Whittle I, Knapp BA, Plank R (2009) Use of wood ash and anaerobic sludge for grassland fertilization: effects on plants and microbes. Die Bodenkultur 60(2):39–51Google Scholar
  37. ISO-11885 (2007) Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES)Google Scholar
  38. Jokinen HK, Kiikkilä O, Fritze H (2006) Exploring the mechanisms behind elevated microbial activity after wood ash application. Soil Biol Biochem 38:2285–2291CrossRefGoogle Scholar
  39. Kandeler E (1993a) Bestimung von ammonium. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Bodenbiologische arbeitsmethoden. Springer, Berlin, pp 366–369Google Scholar
  40. Kandeler E (1993b) Bestimung von nitrat. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Bodenbiologische arbeitsmethoden. Springer, Berlin, pp 369–371Google Scholar
  41. Khanna PK, Raison RJ, Falkiner RA (1994) Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. For Ecol Manag 66:107–125CrossRefGoogle Scholar
  42. Kilian W, Müller F, Starlinger F (1993) Die forstlichen Wuchsgebiete Österreichs—Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. In: Waldforschungszentrum FB (Ed). Viena, p 60Google Scholar
  43. Knapp BA, Insam H (2011) Recycling of biomass ashes: current technologies and future research needs. In: Insam H, Knapp BA (eds) Recycling of biomass ashes. Springer, Berlin, pp 1–16CrossRefGoogle Scholar
  44. Kuba T, Tscholl A, Partl C, Meyer K, Insam H (2008) Wood ash admixture to organic wastes improves compost and its performance. Agr Ecosyst Environ 127:43–49CrossRefGoogle Scholar
  45. Mahmood S, Finlay RD, Fransson A-M, Wallander H (2003) Effects of hardened wood ash on microbial activity, plant growth and nutrient uptake by ectomycorrhizal spruce seedlings. FEMS Microbiol Ecol 43:121–131PubMedCrossRefGoogle Scholar
  46. Massé DI, Talbot G, Gilbert Y (2011) On farm biogas production: a method to reduce GHG emissions and develop more sustainable livestock operations. Anim Feed Sci Technol 166–167:436–445CrossRefGoogle Scholar
  47. Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 30:1–16CrossRefGoogle Scholar
  48. Monaco S, Hatch DJ, Sacco D, Bertora C, Grignani C (2008) Changes in chemical and biochemical soil properties induced by 11-yr repeated additions of different organic materials in maize-based forage systems. Soil Biol Biochem 40:608–615CrossRefGoogle Scholar
  49. Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, New York, pp 293–355Google Scholar
  50. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670CrossRefGoogle Scholar
  51. Odlare M, Pell M (2009) Effect of wood fly ash and compost on nitrification and denitrification in agricultural soil. Appl Energ 86:74–80CrossRefGoogle Scholar
  52. Odlare M, Arthurson V, Pell M, Svensson K, Nehrenheim E, Abubaker J (2011) Land application of organic waste—effects on the soil ecosystem. Appl Energ 88:2210–2218CrossRefGoogle Scholar
  53. Ohno T (1992) Neutralization of soil acidity and release of phosphorus and potassium by wood ash. J Environ Qual 21:433–438CrossRefGoogle Scholar
  54. Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2—chemical and microbiological properties. American Society of Agronomy, Madison, pp 403–430Google Scholar
  55. Omil B, Sánchez-Rodríguez F, Merino A (2011) Effects of ash applications on soil status, nutrition, and growth of Pinus radiata D. Don Plantations. In: Insam H, Knapp BA (eds) Recycling of biomass ashes. Springer, Berlin, pp 69–86CrossRefGoogle Scholar
  56. Ozolinčius R, Varnagirytė I, Armolaitis K, Karltun E (2005) Initial effects of wood ash fertilization on soil, needle and litterfall chemistry in a Scots pine (Pinus sylvestris L.). Stand. Balt For 11:59–67Google Scholar
  57. Ozolinčius R, Buozyte R, Varnagiryte-Kabasinskiene I (2007) Wood ash and nitrogen influence on ground vegetation cover and chemical composition. Biomass Bioenerg 31:710–716CrossRefGoogle Scholar
  58. Perucci P, Monaci E, Casucci C, Vischetti C (2006) Effect of recycling wood ash on microbiological and biochemical properties of soils. Agron Sustain Dev 26:157–165CrossRefGoogle Scholar
  59. Perucci P, Monaci E, Onofri A, Vischetti C, Casucci C (2008) Changes in physico-chemical and biochemical parameters of soil following addition of wood ash: a field experiment. Eur J Agron 28:155–161CrossRefGoogle Scholar
  60. Pitman RM (2006) Wood ash use in forestry—a review of the environmental impacts. Forestry 79:563–588CrossRefGoogle Scholar
  61. Powlson DS, Prookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164CrossRefGoogle Scholar
  62. Ros M, Klammer S, Knapp B, Aichberger K, Insam H (2006a) Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag 22:209–218CrossRefGoogle Scholar
  63. Ros M, Pascual JA, Garcia C, Hernandez MT, Insam H (2006b) Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol Biochem 38:3443–3452CrossRefGoogle Scholar
  64. Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596PubMedCrossRefGoogle Scholar
  65. Saarsalmi A, Mälkönen E, Piirainen S (2001) Effects of wood ash fertilization on forest soil chemical properties. Silva Fenn 35:355–368Google Scholar
  66. Saarsalmi A, Mälkönen E, Kukkola M (2004) Effect of wood ash fertilization on soil chemical properties and stand nutrient status and growth of some coniferous stands in Finland. Scand J For Res 19:217–233CrossRefGoogle Scholar
  67. Saarsalmi A, Kukkola M, Moilanen M, Arola M (2006) Long-term effects of ash and N fertilization on stand growth, tree nutrient status and soil chemistry in a Scots pine stand. For Ecol Manag 235:116–128CrossRefGoogle Scholar
  68. Schiemenz K, Kern J, Paulsen HM, Bachmann S, Eichler-Löbermann B (2011) Phosphorus fertilizing effects of biomass ashes. In: Insam H, Knapp BA (eds) Recycling of biomass ashes. Springer, Berlin, pp 17–31CrossRefGoogle Scholar
  69. Sharma SK, Kalra N (2006) Effect of fly ash incorporation on soil properties and plant productivity—a review. J Sci Ind Res 65:383–390Google Scholar
  70. Smith JL, Doran JW (1996) Measurement and use of pH and electrical conductivity for soil quality analysis. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality, vol 49. Soil Science Society of America (SSSA) Special Publication, Madison, pp 169–185Google Scholar
  71. Steenari BM, Karlsson LG, Lindqvist O (1999) Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration. Biomass Bioenerg 16:119–136CrossRefGoogle Scholar
  72. Stockinger M, Kuba T, Plank R, Meyer K, Insam H (2006) Die Verwertung von Holzaschen—ein lösbares Problem? Österreichische Forstzeitung 117Google Scholar
  73. Umweltbundesamt GmbH (2011) Bundes-Abfallwirtschaftsplan. Accessed 16 July 2012
  74. Walsh JJ, Rousk J, Edward-Jones G, Jones DL, Williams AP (2012) Fungal and bacterial growth following the application of slurry and anaerobic digestate of livestock manure to temperate pasture soils. Biol Fertil Soils. doi: 10.1007/s00374-012-0681-6
  75. Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610CrossRefGoogle Scholar
  76. Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109:263–274PubMedCrossRefGoogle Scholar
  77. Zimmermann S, Frey B (2002) Soil respiration and microbial properties in an acid forest soil: effects of wood ash. Soil Biol Biochem 34:1727–1737CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Fernández-Delgado Juárez
    • 1
    Email author
  • S. Waldhuber
    • 1
  • A. Knapp
    • 1
  • C. Partl
    • 2
  • M. Gómez-Brandón
    • 1
  • H. Insam
    • 1
  1. 1.University of Innsbruck, Institute of MicrobiologyInnsbruckAustria
  2. 2.Amt der Tiroler Landesregierung, Abteilung LWSJFFB Landwirtschaftliches Versuchswesen, Boden- und PflanzenschutzInnsbruckAustria

Personalised recommendations