Skip to main content

Soil organic carbon stocks of conifers, broadleaf and evergreen broadleaf forests of Spain

Abstract

Forests represent an important resource for mitigating the greenhouse effect, but which is the contributions of the different forest types in sequestering and keeping soil C for a longer time is still uncertain, particularly in the Mediterranean area. The aim of this work is to quantify the soil organic C (SOC) stock in the 0–30 and 0–100 cm depths of mineral soil, according to the main forest types—conifers, broadleaf and evergreen broadleaf—and the different climatic zones of Spain, using a database comprising records of 1,974 pedons. Conifers and broadleaf forests show a trend in SOC stock distribution, with the stocks decreasing with increasing Mediterranean conditions. On average, in the 0–30 cm depth, the soils under broadleaf store the highest amount of SOC (5.9 ± 0.1 kg m−2), followed by conifers (5.6 ± 0.1 kg m−2) and evergreen broadleaf soils with an amount always lower (3.4 ± 0.2 kg m−2). Climate and forest cover are the principal factors in determining the amount of SOC stored in Spanish forests. The significantly higher amount of SOC found in conifers and broadleaf forests than the evergreen broadleaf forests leads us to hypothesize a decrease in the SOC if climate change will increase drought periods with a consequent expansion of this latter forest type. Correlations between the SOC stocks under the different forest types, climate and soil features support the major role of climate and vegetation in controlling SOC sequestration in the Mediterranean area, while the effect of texture is less pronounced. Assigning a precise SOC stock to the different forest types, according to each climatic zone, would notably help to obtain an accurate SOC estimate at national level and for future assessments of the status of this large C reservoir.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Adams WA (1973) The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. J Soil Sci 24:10–17

    Article  Google Scholar 

  • Amigo J, Ramirez C (1998) A bioclimatic classification of Chile: woodland communities in the temperate zone. Plant Ecol 136:9–26

    Article  Google Scholar 

  • Arrouays D, Deslais W, Badeau V (2001) The carbon content of topsoil and its geographical distribution in France. Soil Use Manag 17:7–11

    Article  Google Scholar 

  • Balboa-Murias MA, Rojo A, Alvarez JG, Merino A (2006) Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Ann For Sci 63:557–565

    Article  CAS  Google Scholar 

  • Barahona E, Santos E (1981) Estudios de correlación y regresión de diversos parámetros analíticos de 52 perfiles de suelos del sector Montiel-Alcaraz-Bienservida (Ciudad Real-Albacete). An Edafol Agrobiol 40:761–773

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Batjes NH (2008) ISRIC-WISE harmonized global soil profile dataset (Ver. 3.1). Report 2008/2, ISRIC- World Soil Information, Wageningen. Available on-line: http://www.isric.org/isric/webdocs/docs//ISRIC_Report_2008_02.pdf?q=isric/Webdocs/Docs/ISRIC_Report_2008_02.pdf [Retrieved January 31, 2012]

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248

    Article  PubMed  CAS  Google Scholar 

  • Bernstein S, Bernstein R (1999) Elements of statistics II: inferential statistics. McGraw-Hill Professional, Boulder, pp 89–116

    Google Scholar 

  • Boone RD, Grigal DF, Sollins P, Ahrens RJ, Armstring DE (1999) Soil sampling, preparation, archiving, and quality control. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 3–28

    Google Scholar 

  • Chiti T, Gardin L, Perugini L, Quaratino R, Vaccari FP, Miglietta F, Valentini R (2011) Soil organic carbon stock assessment for the different cropland land uses in Italy. Biol Fertil Soils 48:9–17

    Article  Google Scholar 

  • Curtis RO, Post BW (1964) Estimating bulk densities from organic matter content in some Vermont forests soils. Proc Soil Sci Soc Am 28:285–288

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • De Vos B, Van Meirvenne M, Quataert P, Deckers J, Muys B (2005) Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J 69:500–510

    Article  Google Scholar 

  • DGCN (1998) El Segundo Invenatrio Forestal Nacional. España. MMA-DGCN, Madrid

    Google Scholar 

  • Diaz-Hernandez JL, Fernandez EB, Gonzalez JL (2003) Organic and inorganic carbon in soils of semiarid regions: a case study from the Guadix–Baza basin (Southeast Spain). Geoderma 114:65–80

    Article  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and fluxes of global forest ecosystems. Science 263:185–190

    Article  PubMed  CAS  Google Scholar 

  • Evrendilek F, Berberoglu S, Taskinsu-Meydan S, Yilmaz E (2006) Quantifyng carbon budgets of conifer Mediterranean forests ecosystems, Turkey. Environ Monit Assess 119:527–543

    Article  PubMed  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nation (FAO) (2010) Forest Resource Assessment (FRA). Main report, available on-line: http://www.fao.org/forestry/fra/fra2010/en/ [Retrieved January 31, 2012]

  • Hiederer R, Jones RJA, Daroussin J (2006) Soil Profile Analytical Database for Europe (SPADE): reconstruction and validation of the measured data (SPADE/M). Geografisk Tidsskrift, Danish Journal of Geography 106(1). p. 71–85. Available on-line: http://rdgs.dk/djg/pdfs/106/1/06.pdf [Retrieved January 31, 2012]

  • Ibáñez JJ, De Alba S, Boixadera J (1995) The pedodiversity concept and its measurement: application to soil information system. In: King D, Jones RJA, Thomasson J (eds) European land information systems for agro-environmental monitoring. Joint Research Centre, European Commission, Brussels, pp 181–195

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change. The physical science basis: working group 1 contribution to the forest assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeffrey DW (1970) A note on the use of ignition loss as a means for the approximate estimation of soil bulk density. J Ecol 58:297–299

    Article  Google Scholar 

  • Kimble JM, Lal R, Grossman RB (1998) Alteration of soil properties caused by climate change. In: Blume HP (ed) Towards a sustainable land use. Advances in Geoecology, 31, vol. 1. Catena-Verlag, Heidelberg, pp 175–184

    Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38:2510–2518

    Article  CAS  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Manrique LA, Jones CA (1991) Bulk density of soils in relation to soil physical and chemical properties. Soil Sci Soc Am J 55:476–481

    Article  CAS  Google Scholar 

  • Mesquita S, Sousa AJ (2009) Bioclimatic mapping using geostatistical approaches; application to mainland Portugal. Int J Climatol 29:2156–2170

    Article  Google Scholar 

  • Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG et al (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147:209–232

    Article  Google Scholar 

  • Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de biomasa y fijación de CO2 por los bosques españoles. Instituto Nacional de investigaciones Agrarias: 25–42

  • Morvan X, Saby NPA, Arrouays D, Le Bas C, Jones RJA, Verheijen FGA, Bellamy PH, Stephens M, Kibblewhite MG (2008) Soil monitoring in Europe: a review of existing systems and requirements for harmonization. Sci Total Environ 391:1–12

    Article  PubMed  CAS  Google Scholar 

  • Neilson RP, Marks D (1994) A global perspective of regional vegetation and hydrologic sensitivities from climatic change. J Veg Sci 5:715–730

    Article  Google Scholar 

  • Ojima DS, Staffor-Smith M, Beardsley M (1995) Factors affecting carbon storage in semiarid and arid ecosystems. In: Squires VR (ed) Combating global warning by combating land degradation. UNEP, Nairobi, pp 60–68

    Google Scholar 

  • Peinado M, Aguirre JL, Delgadillo J (1997) Phytosociological, bioclimatic and biogeographical classification of woddy climax communities of western North America. J Vet Sci 8:505–528

    Google Scholar 

  • Peng C (2000) From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecol Model 135:33–54

    Article  CAS  Google Scholar 

  • Rawls WJ (1983) Estimating soil bulk density from particle size analysis and organic matter content. Soil Sci 135:123–125

    Article  Google Scholar 

  • Rivas-Martinez S (1983) Pisos bioclimáticos de España. Lazaroa, 5:33–43. Available online: http://www.eird.org/encuentro/pdf/eng/doc5407/doc5407-contenido.pdf [Retrieved January 31, 2012]

  • Rivas-Martinez S (2005) Worldwide bioclimatic classification system. Phytosociological Research Center: www.globalbioclimatics.org

  • Rodeghiero M, Rubio S, Díaz-Pinès E, Romanyà J, Marañòn-Jimènez S, Levy GJ, Fernandez-Getino AP, Sebastià MT, Karyotis T, Chiti T, Sirca C, Martins A, Madeira M, Zhiyanski M, Gristina L, Lamantia T (2011) Soil carbon in Mediterranean ecosystems and related management problems. In: Jandl R, Rodeghiero M, Olsson M (eds) Soil carbon in sensitive European ecosystems: from science to land management. Wiley, New York, pp 175–218

    Chapter  Google Scholar 

  • Rodríguez-Murillo JC (2001) Organic carbon content under different types of land use and soil in peninsular Spain. Biol Fertil Soils 33:53–61

    Article  Google Scholar 

  • Rubio A, Escudero A (2005) Effect of climate and physiography on occurrence and intensity of decarbonation in Mediterranean forest soils of Spain. Geoderma 125:309–319

    Article  CAS  Google Scholar 

  • Saby NPA, Arrouays D, Antoni V, Lemercier B, Follain S, Walter C, Schvartz C (2008) Changes in soil organic carbon in a mountainous French region, 1990–2004. Soil Use Manag 24:254–262

    Article  Google Scholar 

  • Saini GR (1966) Organic matter as a measure of bulk density of soil. Nature 210:1295–1296

    Article  Google Scholar 

  • Sánchez-Palomares O, Sánchez Serrano F, Carretero Carrero MP (1999) Modelos y cartografía de estimaciones climáticas termopluviométricas para la España peninsular. Ministerio de Agricultura, Pesca y Alimentación, Madrid

    Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Article  PubMed  CAS  Google Scholar 

  • Schrumpf M, Schulze ED, Kaiser K, Schumacher J (2011) How accurately can soil organic carbon stock change be quantified by soil inventories? Biogeosciences 8:1193–1212

    Article  CAS  Google Scholar 

  • Sokal RR, Rohl FJ (1997) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman WH & Co, New York, p 877

    Google Scholar 

  • Sykes MT, Prentice IC, Cramer W (1996) A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr 23:203–233

    Google Scholar 

  • Ungaro F, Staffilani F, Tarocco P (2010) Assessing and mapping topsoil organic carbon stock at regional scale: a scorpan kriging approach conditional on soil map delineations and land use. Land Degrad Dev 21:565–581

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition—what do we know. Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–263

    Article  Google Scholar 

  • Walther GR, Berger S, Sykes MT (2005) An ecological ‘footprint’ of climate change. Proc Roy Soc B 272:1427–1432

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge COST action 639 for suggesting and supporting this publication and the people of the Department of Silviculture and Pasciculture of the Polytechnical University of Madrid for their collaboration. This work was partially supported by a Research Project of the Spanish Government (Ref.: AGL2010-16862/FOR). A special acknowledgment is for Rey A for critically reading the manuscript and for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chiti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chiti, T., Díaz-Pinés, E. & Rubio, A. Soil organic carbon stocks of conifers, broadleaf and evergreen broadleaf forests of Spain. Biol Fertil Soils 48, 817–826 (2012). https://doi.org/10.1007/s00374-012-0676-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0676-3

Keywords

  • Bioclimatic belt
  • Carbon stock
  • Forest soils
  • Soil inventory
  • Soil organic carbon