Skip to main content

Advertisement

Log in

Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions?

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

This study focuses on the biological and morphological development of humus profiles in forested Italian Alpine soils as a function of climate. Humus form description, systematic investigation of microannelid communities and polyphasic biochemical fingerprinting of soil microbial communities (denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid analysis (PLFA)) were performed to compare sites differing in mean annual temperature due to different altitude and exposure. Although the soil biota showed complex responses, several differences in soil biological properties seem to be due to thermal differences. Although soil acidity also determines biological properties, it is not a state factor but rather influenced by them. The thickness of the organic layer and the acidification of the subjacent mineral horizon increased under cooler conditions (north-exposure; higher altitude), whereas the thickness of the A horizon inversely decreased. Species richness of microannelid assemblages was higher under warmer conditions (south-exposure; lower altitude) and the vertical distribution of microannelids shifted along the gradient to lower temperatures from predominant occurrence in the mineral soil to exclusive occurrence in the organic layer. Microbial biomass (total PLFA) was higher at the cooler sites; the prevalence of Gram-negative bacteria could be ascribed to their better adaptation to lower temperature, pH and nutrient contents. The δ13C signatures of the PLFA markers suggested a lower decomposition rate at the cooler sites, resulting in a lower respiratory loss and an accumulation of weakly decomposed organic material. DGGE data supported the PLFA results. Both parameters reflected the expected thermal sequence. This multidisciplinary case study provided indications of an association of climate, mesofauna and microbiota using the humus form as an overall link. More data are however needed and further investigations are encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ad-hoc-AG-Boden (2005) Bodenkundliche Kartieranleitung – 5 (KA5). Auflage. Hannover, Germany

  • Agnelli A, Ascher J, Corti G, Ceccherini MT, Pietramellara G, Nannipieri P (2007) Purification and isotopic signatures (δ13C, δ15N, ∆14C) of soil extracellular DNA. Biol Fertil Soils 44:353–361

    Article  CAS  Google Scholar 

  • Andreetta A, Macci C, Ceccherini MT, Cecchini G, Masciandaro G, Pietramellara G, Carnicelli S (2011) Microbial dynamics in Mediterranean Moder humus. Biol Fertil Soils. doi:10.1007/s00374-011-0622-9

  • Ascher J, Ceccherini MT, Landi L, Mench M, Pietramellara G, Nannipieri P, Renella G (2009a) Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Appl Soil Ecol 41:351–359

    Article  Google Scholar 

  • Ascher J, Ceccherini MT, Pantani OL, Agnelli A, Borgogni F, Guerri G, Nannipieri P, Pietramellara G (2009b) Sequential extraction and genetic fingerprinting of a forest soil metagenome. Appl Soil Ecol 42:176–181

    Article  Google Scholar 

  • Ascher J, Ceccherini MT, Chroňáková A, Jirout J, Borgogni F, Elhottová D, Šimek M, Pietramellara G (2010) Evaluation of the denaturing gradient gel electrophoresis (DGGE)—apparatus as a parameter influencing soil microbial community fingerprinting. World J Microb Biot 26:1721–1726

    Article  CAS  Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Beylich A, Graefe U (2009) Investigations of annelids at soil monitoring sites in Northern Germany: reference ranges and time-series data. Soil Organisms 81:175–196

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol Pharm 37:911–917

    Article  CAS  Google Scholar 

  • Bonifacio E, Falsone G, Petrillo M (2011) Humus forms, organic matter stocks and carbon fractions in forest soils of northwestern Italy. Biol Fertil Soils 47:555–566

    Article  CAS  Google Scholar 

  • Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    Article  PubMed  Google Scholar 

  • Budge K, Leifeld J, Egli M, Fuhrer J (2011) Soil microbial communities in (sub)alpine grasslands indicate a moderate shift towards new environmental conditions 11 years after warming. Soil Biol Biochem 43:1148–1154

    Article  CAS  Google Scholar 

  • Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Chang 59:1–4

    Article  Google Scholar 

  • Didden WAM, Fründ HC, Graefe U (1997) Enchytraeids. In: Benckiser G (ed) Fauna in soil ecosystems. Recycling processes, nutrient fluxes, and agricultural production. Marcel Dekker, New York, pp 135–172

    Google Scholar 

  • Douterelo I, Goulder R, Lillie M (2010) Soil microbial community response to land management and depth, related to the degradation of organic matter in English wetlands: implications for the in situ preservation of archaeological remains. Appl Soil Ecol 44:219–227

    Article  Google Scholar 

  • Dunger W, Fiedler HJ (1989) Methoden der Bodenbiologie. Gustav Fischer, Stuttgart

    Google Scholar 

  • Egli M, Mirabella A, Sartori G, Giaccai D, Zanelli R, Plötze M (2007) Effect of slope aspect on transformation of clay minerals in Alpine soils. Clay Miner 42:375–401

    Article  Google Scholar 

  • Egli M, Sartori G, Mirabella A, Favilli F, Giaccai D, Delbos E (2009) Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149:124–136

    Article  CAS  Google Scholar 

  • Egli M, Sartori G, Mirabella A, Giaccai D, Favilli F, Scherrer D, Krebs R, Delbos E (2010a) The influence of weathering and organic matter on heavy metals lability in silicatic, Alpine soils. Sci Total Environ 408:931–946

    Article  PubMed  CAS  Google Scholar 

  • Egli M, Sartori G, Mirabella A (2010b) The effects of exposure and climate on the weathering of late Pleistocene and Holocene Alpine soils. Geomorphology 114:466–482

    Article  Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev Environ Resour 30:75–115

    Article  Google Scholar 

  • Favilli F, Egli M, Brandová D, Ivy-Ochs S, Kubik PW, Cherubini P, Mirabella A, Sartori G, Giaccai D, Haeberli W (2009) Combined use of relative and absolute dating techniques for detecting signals of Alpine landscape evolution during the late Pleistocene and early Holocene. Geomorphology 112:48–66

    Article  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Frey SD, Drijber R, Smith H, Melillo JM (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907

    Article  CAS  Google Scholar 

  • Galvan P, Ponge JF, Chersich S, Zanella A (2008) Humus components and soil biogenic structures in Norway spruce ecosystems. Soil Sci Soc Am J 72:548–557

    Article  CAS  Google Scholar 

  • Graefe U, Beylich A (2003) Critical values of soil acidification for annelid species and the decomposer community. Newsl Enchytraeidae 8:51–55

    Google Scholar 

  • Graefe U, Beylich A (2006) Humus forms as tool for upscaling soil biodiversity data to landscape level? Mitteilgn Dtsch Bodenkundl Gesellsch 108:6–7

    Google Scholar 

  • Graefe U, Schmelz RM (1999) Indicator values, strategy types and life forms of terrestrial Enchytraeidae and other microannelids. Newsl Enchytraeidae 6:59–67

    Google Scholar 

  • Green CT, Scow KM (2000) Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeol J 8:126–141

    Article  CAS  Google Scholar 

  • Hagedorn F, van Hees PAW, Handa IT, Hättenschwiler S (2008) Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochem Cy 22:GB2004

    Article  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturant gradients. Appl Environ Microbiol 63:3233–3241

    PubMed  CAS  Google Scholar 

  • Hirsch PR, Mauchline TH, Clark IM (2010) Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42:878–887

    Article  CAS  Google Scholar 

  • ISO 23611-3 (2007) Soil quality—sampling of soil invertebrates—Part 3: Sampling and soil extraction of enchytraeids. International Organization for Standardization; ISO 23611-3:2007, Geneva

  • IUSS Working Group WRB (2006) World Reference Base for Soil Resources 2006. 2nd edition, World Soil Resources Reports No. 103, FAO (Food and Agriculture Organisation of the United Nations), Rome

  • Jänsch S, Römbke J, Didden W (2005) The use of enchytraeids in ecological soil classification and assessment concepts. Ecotox Environ Safe 62:266–277

    Article  Google Scholar 

  • Jayasinghe BATD, Parkinson D (2008) Actinomycetes as antagonists of litter decomposer fungi. Appl Soil Ecol 38:109–118

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Jenny H (1980) The soil resource. Springer, New York

    Book  Google Scholar 

  • Lalanne A, Bardat J, Lalanne-Amara F, Gautrot T, Ponge JF (2008) Opposite responses of vascular plant and moss communities to changes in humus forms, as expressed by the Humus Index. J Veg Sci 19:645–652

    Article  Google Scholar 

  • Leidlmair A (1996) Tirol-Atlas. Eine Landeskunde in Karten, Tiroler Landesregierung—Kulturreferat, Alpina Offset, Innsbruck

  • Mannistö MK, Tiirola M, Haggblom MM (2007) Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–465

    Article  PubMed  Google Scholar 

  • Margesin R, Jud M, Tscherko D, Schinner F (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218

    Article  PubMed  CAS  Google Scholar 

  • Nakatsu CH (2007) Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci Soc Am J 71:562–571

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintraub MN, Schmidt SK (2005) Structure and function of alpine and arctic soil microbial communities. Res Microbiol 156:775–784

    Article  PubMed  Google Scholar 

  • Ning Y, Liu W, An Z (2006) Variation of soil ∂13C values in Xifeng loess-paleosol sequence and its paleoenvironmental implication. Chinese Sci Bull 51:1350–1354

    Article  CAS  Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    PubMed  Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  PubMed  CAS  Google Scholar 

  • Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B (2008) Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem 40:1103–1113

    Article  CAS  Google Scholar 

  • Ponge JF (2003) Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biol Biochem 35:935–945

    Article  CAS  Google Scholar 

  • Ponge JF, Jabiol B, Gégout JC (2011) Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma 162:187–195

    Article  Google Scholar 

  • Risk D, Kellman L, Moroni M (2009) Characterisation of spatial variability and patterns in tree and soil ∂13C at forested sites in eastern Canada. Isot Environ Healt S 45:220–230

    Article  CAS  Google Scholar 

  • Salmon S, Artuso N, Frizzera L, Zampedri R (2008) Relationships between soil fauna communities and humus forms: response to forest dynamics and solar radiation. Soil Biol Biochem 40:1707–1715

    Article  CAS  Google Scholar 

  • Sartori G, Mancabelli A (2009) Carta dei suoli del Trentino alla scala 1:250.000. Museo Tridentino di Scienze Naturali, Trento

    Google Scholar 

  • Sboarina C, Cescatti A (2004) Il clima del Trentino—Distribuzione spaziale delle principali variabili climatiche. Report 33, Centro di Ecologia Alpina Monte Bondone, Trento, Italy

  • Schmelz RM, Collado R (2010) A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82:1–176

    Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 10th edn. USDA (United States Department of Agriculture), NRCS (National Resources Conservation Service), Washington, DC

    Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in a plant sociology based on similarity of species content and its applications to analysis of vegetation on Danish commons. Det Kong Danske Vidensk Selsk Biol Skr 5:1–34

    Google Scholar 

  • Stark S, Kytöviita MM, Männistö MK, Neumann AB (2008) Soil microbial and microfaunal communities and organic matter quality in reindeer winter and summer ranges in Finnish subarctic mountain birch forests. Appl Soil Ecol 40:456–464

    Article  Google Scholar 

  • Trigo C, Ball AS (1994) Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances? Microbiology 140:3145–3152

    Article  PubMed  CAS  Google Scholar 

  • van Vliet PCJ (2000) Enchytraeids. In: Sumner ME (ed) Handbook of soil science. CRC, Boca Raton, pp 70–77, Section C

    Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self-organisation in the soil-microbe complex. Science 304:1634–1637

    Article  PubMed  CAS  Google Scholar 

  • Young IM, Blanchart E, Chenu C, Dangerfield M, Fragoso C, Grimaldi M, Ingram J, Monrozier LJ (1998) The interaction of soil biota and soil structure under global change. Glob Change Biol 4:703–712

    Article  Google Scholar 

  • Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H, Englisch M, Brethes A, Broll G, Gobatl JM, Brun JJ, Milbert G, Kolb E, Wolf U, Frizzera L, Galvan P, Kolli R, Baritz R, Kemmerse R, Vacca A, Serra G, Banas D, Garlato A, Chersich S, Klimo E, Langohr R (2011a) European Humus Forms Reference Base. http://hal.archives-ouvertes.fr/docs/00/56/17/95/PDF/Humus_Forms_ERB_31_01_2011.pdf

  • Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H, Englisch M (2011b) A European morpho-functional classification of humus forms. Geoderma. doi:10.1016/j.geoderma.2011.05.016

  • Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Ministero delle Politiche Agricole e Forestali (Roma, Italia; project: MEPESA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ascher.

Appendix A

Appendix A

Table 7 Physical–chemical properties of the investigated forest soils located in Val di Fassa. Stable and labile organic matter fractions and C/N ratios of the fine earth (< 2 mm)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascher, J., Sartori, G., Graefe, U. et al. Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions?. Biol Fertil Soils 48, 709–725 (2012). https://doi.org/10.1007/s00374-012-0670-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0670-9

Keywords

Navigation