Skip to main content

Advertisement

Log in

Growth, P uptake in grain legumes and changes in rhizosphere soil P pools

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In soils with low P availability, several legumes have been shown to mobilise less labile P pools and a greater capacity to take up P than cereals. But there is little information about the size of various soil P pools in the rhizosphere of legumes in soil fertilised with P although P fertiliser is often added to legumes to improve N2 fixation. The aim of this study was to compare the growth, P uptake and the changes in rhizosphere soil P pools in five grain legumes in a soil with added P. Nodulated chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.), yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (Lupinus angustifolius L.) were grown in a loamy sand soil low in available P to which 80 mg P kg−1 was added and harvested at flowering and maturity. At maturity, growth and P uptake decreased in the following order: faba bean > chickpea > narrow-leafed lupin > yellow lupin > white lupin. Compared to the unplanted soil, the depletion of labile P pools (resin P and NaHCO3-P inorganic) was greatest in the rhizosphere of faba bean (54% and 39%). Of the less labile P pools, NaOH-P inorganic was depleted in the rhizosphere of faba bean while NaOH-P organic and residual P were most strongly depleted in the rhizosphere of white lupin. The results suggest that even in the presence of labile P, less labile P pools may be depleted in the rhizosphere of some legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bünemann EK, Heenan DP, Marschner P, McNeill AM (2006) Long-term effects of crop rotation, stubble management and tillage on soil phosphorus dynamics. Aus J Soil Res 44:611–618. doi:10.1071/SR05188

    Article  Google Scholar 

  • French R, Sweetingham M, Shea G (2001) A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (Lupinus angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia. Aus J Agric Res 52:945–954

    Article  Google Scholar 

  • George TS, Turner BL, Gregory PJ, Cade-Menun BJ, Richardson AE (2006) Depletion of organic phosphorus from oxisols in relation to phosphatase activities in the rhizosphere. Eur J Soil Sci 57:47–57. doi:10.1111/j.1365-2389.2006.00767.x

    Article  CAS  Google Scholar 

  • Gerke J (1992) Phosphate, aluminium and iron in the soil solution of three different soils in relation to varying concentrations of citric acid. Zeitsch Pflanzenern Bdkde 155:339–343. doi:10.1002/jpln.19921550417

    Article  CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56. doi:10.1016/s0929-1393(96)00126-6

    Article  Google Scholar 

  • Hanson WC (1950) The photometric determination of phosphorus in fertilizers using the phosphovanado-molybdate complex. J Sci Food Agric 1:172–173. doi:10.1002/jsfa.2740010604

    Article  CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Henrikson A, Selmer-Olsen AR (1970) Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 95:514–518

    Article  Google Scholar 

  • Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Kamh M, Horst W, Amer F, Mostafa H, Maier P (1999) Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 211:19–27. doi:10.1023/a:1004543716488

    Article  CAS  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen—inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, 2nd edn. American Society of Agronomy, Madison, pp 643–698

    Google Scholar 

  • Kouno K, Tuchiya Y, Ando T (1995) Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol Biochem 27:1353–1357

    Article  CAS  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Spark DL (ed) Methods of soil analysis, 3rd edn. Soil Science Society of America, Madison, pp 869–919

    Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Li C-J, Liang R-X (2005) Root cluster formation and citrate exudation of white lupin (Lupinus albus L) as related to phosphorus availability. J Integr Plant Biol 47:172–177. doi:10.1111/j.1744-7909.2005.00012.x

    Article  CAS  Google Scholar 

  • Li H, Shen J, Zhang F, Clairotte M, Drevon J, Le Cadre E, Hinsinger P (2008) Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant Soil 312:139–150. doi:10.1007/s11104-007-9512-1

    Article  CAS  Google Scholar 

  • Li H, Shen J, Zhang F, Marschner P, Cawthray G, Rengel Z (2010) Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. Biol Fertil Soils 46:79–91

    Article  CAS  Google Scholar 

  • Linquist BA, Singleton PW, Cassman KG (1997) Inorganic and organic phosphorus dynamics during a build-up and decline of available phosphorus in an Ultisol soil. Soil Sci 162:254–264

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (2002) Root-induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 617–649

    Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2005a) Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil 271:175–187. doi:10.1007/s11104-004-2386-6

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2005b) Phosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliser. Aus J Agric Res 56:1041–1047. doi:10.1071/ar05060

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2006) Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant Soil 281:109–120. doi:10.1007/s11104-005-3936-2

    Article  CAS  Google Scholar 

  • Nziguheba G, Merckx R, Palm CA, Rao MR (2000) Organic residues affect phosphorus availability and maize yields in a Nitisol of western Kenya. Biol Fertility Soils 32:328–339

    Article  CAS  Google Scholar 

  • Pearse S, Veneklaas E, Cawthray G, Bolland M, Lambers H (2006) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 288:127–139. doi:10.1007/s11104-006-9099-y

    Article  CAS  Google Scholar 

  • Rayment GE, Lyons DJ (2010) Soil chemical methods: Australasia. CSIRO publishing, Collingwood

    Google Scholar 

  • Reuter DJ, Robinson JB (1997) Plant analysis: an interpretation manual, vol 2nd edition. CSIRO publishing, Collingwood

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aus J Plant Physiol 28:897–906. doi:10.1071/pp01093

    Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649. doi:10.1046/j.1365-313x.2001.00998.x

    Article  PubMed  CAS  Google Scholar 

  • Rose T, Hardiputra B, Rengel Z (2010) Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant Soil 326:159–170. doi:10.1007/s11104-009-9990-4

    Article  CAS  Google Scholar 

  • Schoenau JJ, O’Halloran IP (2008) Sodium bicarbonate-extractable phosphate. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC press, Boca Raton, pp 89–94

    Google Scholar 

  • Searle PL (1984) The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen, a review. Analyst 109:549–568

    Article  CAS  Google Scholar 

  • Stevens DP, Cox JW, Chittleborough DJ, (Australia) CRCfSaLM (1997) Analysis and storage of water samples for determining molybdate reactive phosphorus CRC technical report; 2/97. Cooperative Research Centre for Soil & Land Management, Urrbrae

    Google Scholar 

  • Tang CX, Robson AD (1993) Lupinus species differ in their requirements for iron. Plant Soil 157:11–18

    CAS  Google Scholar 

  • Tang C, Robson AD, Longnecker NE, Buirchell BJ (1995) The growth of lupinus species on alkaline soils. Aus J Agric Res 46:255–268

    Article  Google Scholar 

  • Tang C, Fang RY, Raphael C (1998) Factors affecting soil acidification under legumes II. Effect of phosphorus supply. Aus J Agric Res 49:657–664

    Article  CAS  Google Scholar 

  • Tarafdar JC, Claassen N (2003) Organic phosphorus utilization by wheat plants under sterile conditions. Biol Fertil Soils 39:25–29. doi:10.1007/s00374-003-0671-9

    Article  CAS  Google Scholar 

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis, Boca Raton, pp 75–86

    Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197. doi:10.1023/a:1022367312851

    Article  CAS  Google Scholar 

  • Vu DT, Tang C, Armstrong RD (2008) Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate. Plant Soil 304:21–33. doi:10.1007/s11104-007-9516-x

    Article  CAS  Google Scholar 

  • Wang X, Tang C, Guppy C, Sale P (2008) Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. Plant Soil 312:117–128. doi:10.1007/s11104-008-9589-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Australian Research Council. HMH acknowledges the support from the Ministry of Higher Education, Malaysia, and Universiti Sains Malaysia for her studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasnuri Mat Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mat Hassan, H., Marschner, P., McNeill, A. et al. Growth, P uptake in grain legumes and changes in rhizosphere soil P pools. Biol Fertil Soils 48, 151–159 (2012). https://doi.org/10.1007/s00374-011-0612-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0612-y

Keywords

Navigation