Skip to main content

Advertisement

Log in

Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Three slow-growing legume trees used for desert reforestation and urban gardening in the Sonoran Desert of Northwestern Mexico and the Southwestern USA were evaluated whether their growth can be promoted by inoculation with plant growth-promoting bacteria (Azospirillum brasilense and Bacillus pumilus), unidentified arbuscular mycorrhizal (AM) fungi (mainly Glomus sp.), and supplementation with common compost under regular screenhouse cultivation common to these trees in nurseries. Mesquite amargo (Prosopis articulata) and yellow palo verde (Parkinsonia microphylla) had different positive responses to several of the parameters tested while blue palo verde (Parkinsonia florida) did not respond. Survival of all tree species was over 80% and survival of mesquite was almost 100% after 10 months of cultivation. Inoculation with growth-promoting microorganisms induced significant effects on the leaf gas exchange of these trees, measured as transpiration and diffusive resistance, when these trees were cultivated without water restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Adams M, Strain B (1969) Seasonal photosynthetic rates in stems of Cercidium floridum Benth. Photosynthetica 3:55–62

    CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal Symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097

    Article  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Google Scholar 

  • Bacilio M, Hernandez J-P, Bashan Y (2006) Restoration of giant cardon cacti in barren desert soil amended with common compost and inoculated with Azospirillum brasilense. Biol Fertil Soils 43:112–119. doi:10.1007/s00374-006-0072-y

    Article  Google Scholar 

  • Barth RC, Klemmedson JO (1986) Seasonal and annual changes in biomass nitrogen and carbon of mesquite and palo verde ecosystems. J Range Manage 39:108–112. doi:10.2307/3899278

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE (2005a) Bacteria / Plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment, vol. 1. Elsevier, Oxford, pp 103–115

    Google Scholar 

  • Bashan Y, de-Bashan LE (2005b) Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biol Biochem 37:1795–1804. doi:10.1016/j.soilbio.2005.02.013

    Article  CAS  Google Scholar 

  • Bashan Y, Dubrovsky JG (1996) Azospirillum spp. participation in dry matter partitioning in grasses at the whole plant level. Biol Fertil Soils 23:435–440. doi:10.1007/BF00335919

    Article  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (Plant Growth-Promoting Bacteria) and PGPB. Soil Biol Biochem 30:1225–1228. doi:10.1016/S0038-0717(97) 00187-9

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (2002) Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees-Struct Funct 16:159–166

    CAS  Google Scholar 

  • Bashan Y, Rojas A, Puente ME (1999) Improved establishment and development of three cacti species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil. Can J Microbiol 45:441–451. doi:10.1139/cjm-45-6-441

    Article  CAS  Google Scholar 

  • Bashan Y, Davis EA, Carrillo-Garcia A, Linderman RG (2000a) Assessment of VA mycorrhizal inoculum potential in relation to the establishment of cactus seedlings under mesquite nurse-trees in the Sonoran desert. Appl Soil Ecol 14:165–176. doi:10.1016/S0929-1393(00) 00050-0

    Article  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000b) Growth promotion of the oilseed halophyte Salicornia bigelovii in seawater inoculated with mangrove rhizosphere bacteria and Azospirillum. Biol Fertil Soils 32:265–272. doi:10.1007/s003740000246

    Article  CAS  Google Scholar 

  • Bashan Y, Hernandez J-P, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carrier for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368. doi:10.1007/s00374-002-0481-5

    Article  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. doi:10.1139/w04-035

    Article  PubMed  CAS  Google Scholar 

  • Bean TM, Smith SE, Karpiscak MM (2004) Intensive revegetation in Arizona’s hot desert. The advantages of container stock. Nativeplants J 5:173–180

    Google Scholar 

  • Bethlenfalvay GJ, Dakessian S, Pacovsky RS (1984) Mycorrhizae in a southern California desert: ecological implications. Can J Bot 62:519–524. doi:10.1139/b84-077

    Article  Google Scholar 

  • Bethlenfalvay GJ, Lindeman RG (eds) (1992) Mycorrhizae in sustainable agriculture. ASA. Spec. Publ, Madison, Wisconsin, USA

    Google Scholar 

  • Bowers JE, Turner RM (2001) Dieback and episodic mortality of Cercidium microphyllum (foothill paloverde), a dominant Sonoran desert tree. J Torrey Bot Soc 128:128–140. doi:10.2307/3088735

    Article  Google Scholar 

  • Brundrett M, Melville L, Peterson L (eds) (1994) Practical methods in mycorrhiza research. Mycologue Publications, Sidney, British Columbia, Canada

    Google Scholar 

  • Carrillo AE, Li CY, Bashan Y (2002) Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89:428–432. doi:10.1007/s00114-002-0347-6

    Article  PubMed  CAS  Google Scholar 

  • Carrillo-Garcia A, Leon de la Luz J-L, Bashan Y, Bethlenfalvay GJ (1999) Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran desert. Restor Ecol 7:321–335. doi:10.1046/j.1526-100X.1999.72027.x

    Article  Google Scholar 

  • Carrillo-Garcia A, Bashan Y, Diaz-Rivera E, Bethlenfalvay GJ (2000) Effects of resource - island soils, competition, and inoculation with Azospirillum on survival and growth of Pachycereus pringlei, the giant cactus of the Sonoran Desert. Restor Ecol 8:65–73. doi:10.1046/j.1526-100x.2000.80009.x

    Article  Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For Sci 43:99–112

    Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1996) Azospirillum inoculation in pregerminating wheat seeds. Can J Microbiol 42:83–86

    Article  CAS  Google Scholar 

  • Cui M, Nobel PS (1992) Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol 122:643–649

    CAS  Google Scholar 

  • Domenech J, Ramos-Solano B, Probanza A, Lucas-Garcıa JA, Colon JJ, Gutierrez-Manero FJ (2004) Bacillus spp. and Pisolithus tinctorius effects on Quercus ilex ssp. ballota: a study on tree growth, rhizosphere community structure and mycorrhizal infection. For Ecol Manage 194:3–303. doi:10.1016/j.foreco.2004.02.026

    Article  Google Scholar 

  • Enebak SA (2005) Rhizobacteria isolated from loblolly pine seedlings mediate growth-promotion of greenhouse-grown loblolly, slash, and longleaf pine seedlings. For Sci 51:541–545

    Google Scholar 

  • Estes BL, Enebak SA, Chappelka AH (2004) Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure. Can J Res 34:1410–1416. doi:10.1139/x04-026

    Article  CAS  Google Scholar 

  • Felker P, Clark PR, Laag AE, Pratt PF (1981) Salinity tolerance of the tree legume mesquite (Prosopis glandulosa var torreyana, P. velutina, and P. articulata), algarrobo (P. chilensis), kiawe (P. pallida) and tamarugo (P. tamarugo) grown in sand culture on nitrogen free media. Plant Soil 61:311–317. doi:10.1007/BF02182012

    Article  Google Scholar 

  • Felker P, Cannell GH, Clark PR, Osborn JF, Nash P (1983) Biomass production of Prosopis species (mesquite), Leucaena, and other leguminous trees grown under heat/drought stress. For Sci 29:592–606

    Google Scholar 

  • Grace J, Malcolm DC, Bradbury IK (1975) The effect of wind and humidity on leaf diffusive resistance in Sitka spruce seedlings. J Appl Ecol 12:931–940. doi:10.2307/2402099

    Article  Google Scholar 

  • Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Identification of plant growth-promoting bacteria suitable for phytostabilization of mine tailings. Environ Sci Technol 42:2079–2084. doi:10.1021/es072013j

    Article  PubMed  CAS  Google Scholar 

  • Hernandez J-P, de-Bashan LE, Rodriguez DJ, Rodriguez Y, Bashan Y (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol 45:88–93. doi:10.1016/j.ejsobi.2008.08.004

    Article  CAS  Google Scholar 

  • Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129–133

    PubMed  Google Scholar 

  • Hooper E, Condit R, Legendre P (2002) Responses of 20 native tree species to reforestation strategies for abandoned farmland in Panama. Ecol Appl 12:1626–1641. doi:10.1890/1051-0761(2002) 012[1626:RONTST]2.0.CO;2

    Article  Google Scholar 

  • Levy Y, Krikun J (1980) Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol 85:25–31. doi:10.1111/j.1469-8137.1980.tb04444.x

    Article  Google Scholar 

  • Lucas García JA, Domenech J, Santamaría C, Camacho M, Daza A, Gutierrez Mañero FJ (2004) Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environ Exp Bot 52:239–251. doi:10.1016/j.envexpbot.2004.02.003

    Article  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Leeuwenhoek Int J G 86:1–25. doi:10.1023/B:ANTO.0000024903.10757.6e

    Article  CAS  Google Scholar 

  • Marsh BA (1971) Measurement of length in random arrangements of lines. J Appl Ecol 8:265–267. doi:10.2307/2402144

    Article  Google Scholar 

  • Mctainsh GH (1986) A dust monitoring programme for desertification control in West Africa. Environ Conserv 13:17–25

    Article  Google Scholar 

  • Miyakawa A (1999) Creative ecology: restoration of native forests by native trees. Plant Biotechnol 16:15–25

    Google Scholar 

  • Moore R, Russell R (1990) The 'Three Norths' forest protection system–China. Agrofor Syst 10:71–88. doi:10.1007/BF00118728

    Article  Google Scholar 

  • Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can J Res 17:929–940. doi:10.1139/x87-145

    Article  Google Scholar 

  • Puente M-E, Bashan Y (1993) Effect of inoculation with Azospirillum brasilense strains on the germination and seedlings growth of the giant columnar Cardon cactus (Pachycereus pringlei). Symbiosis 15:49–60

    Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004a) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642. doi:10.1055/s-2004-821100

    Article  PubMed  CAS  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2004b) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol 6:643–650. doi:10.1055/s-2004-821101

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea J-M (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498. doi:10.1128/AEM.67.2.495-498.2001

    Article  PubMed  CAS  Google Scholar 

  • Roberts NC (1989) Baja California Plant Field Guide. Natural History, La Jolla, CA, p 309

    Google Scholar 

  • Sarig S, Okon Y, Blum A (1992) Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J Plant Nutr 15:805–819. doi:10.1080/01904169209364364

    Article  Google Scholar 

  • Sastry MSR, Sharma AK, Johri BN (2000) Effect of an AM fungal consortium and Pseudomonas on the growth and nutrient uptake of Eucalyptus hybrid. Mycorrhiza 10:55–61. doi:10.1007/s005720000057

    Article  Google Scholar 

  • Scott K (2006) Effect of heat on the dormancy and viability of Parkinsonia seeds: Implications for management. Ecol Manage Restor 7:153–156. doi:10.1111/j.1442-8903.2006.280_6.x

    Article  Google Scholar 

  • Shreve F (1951) Vegetation of the Sonoran desert. Carnegie Institution of Washington, Washington DC Publication no. 591

    Google Scholar 

  • Spalding VM (1906) Biological relations of desert shrubs. II. Absorption of water by leaves. Bot Gaz 41:262–282. doi:10.1086/328798

    Article  Google Scholar 

  • Toledo G, Bashan Y, Soeldner A (1995) In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria. Can J Microbiol 41:1012–1020

    Article  CAS  Google Scholar 

  • Vierheilig H, Coughlan A, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  • Wang X, Dong Z, Zhang J, Liu L (2004) Modern dust storms in China: an overview. J Arid Environ 58:559–574. doi:10.1016/j.jaridenv.2003.11.009

    Article  Google Scholar 

  • Whittaker RH, Niering WA (1975) Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology 56:771–790. doi:doi:10.2307/1936291

    Article  Google Scholar 

  • Zaady E, Perevolotsky A (1995) Enhancement of growth and establishment of oak seedlings (Quercus ithaburensis Decaisne) by inoculation with Azospirillum brasilense. For Ecol Manage 72:81–83. doi:10.1016/0378-1127(94) 03446-4

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gabor Bethlenfalvay for critical reading of the original manuscript and its revised version, Peter Felker (D'Arrigo Bros. Co., Salinas, CA, USA) for his advice concerning cultivation of mesquite trees, Jose Luis Leon de la Luz for botanical advice, and Luz de-Bashan for organizing the manuscript. This study was mainly supported by Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACYT, contract #50052-Z) and partly funded by The Bashan Foundation, USA. Yoav Bashan participated in this study in memory of the late Avner Bashan of Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoav Bashan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashan, Y., Salazar, B. & Puente, M.E. Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house. Biol Fertil Soils 45, 655–662 (2009). https://doi.org/10.1007/s00374-009-0368-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-009-0368-9

Keywords

Navigation