Skip to main content

Advertisement

Log in

Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effect of inoculation with plant growth-promoting Rhizobium and Pseudomonas species on NaCl-affected maize. Two cultivars of maize (cv. Agaiti 2002 and cv. Av 4001) selected on the basis of their yield potential were grown in pots outdoors under natural conditions during July. Microorganisms were applied at seedling stage and salt stress was induced 21 days after sowing and maintained up to 50% flowering after 120 days of stress. The salt treatment caused a detrimental effect on growth and development of plants. Co-inoculation resulted in some positive adaptative responses of maize plants under salinity. The salt tolerance from inoculation was generally mediated by decreases in electrolyte leakage and in osmotic potential, an increase in osmoregulant (proline) production, maintenance of relative water content of leaves, and selective uptake of K ions. Generally, the microbial strain acted synergistically. However, under unstressed conditions, Rhizobium was more effective than Pseudomonas but under salt stress the favorable effect was observed even if some exceptions were also observed. The maize cv. Agaiti 2002 appeared to be more responsive to inoculation and was relatively less tolerant to salt compared to that of cv. Av 4001.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alam SM (1994) Nutrient uptake by plant under stress conditions. In: Pessakali M (ed) Handbook of plant stress. Marcell Dekker, New York, pp 227–246

    Google Scholar 

  • Al-Karaki GN (2002) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54. doi:10.1007/s005720000055

    Article  Google Scholar 

  • Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. Plant Nutr 21:263–276

    Article  CAS  Google Scholar 

  • Arnon DJ (1949) Copper enzyme in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42. doi:10.1080/713608051

    Article  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30. doi:10.1016/S0735-2689(02)80036-3

    Article  CAS  Google Scholar 

  • Ashraf M, Mueen-Ud-Din M, Warrich N (2003) Production efficiency of mung bean (Vigna radiata L.) as affected by seed inoculation and NPK application. Int J Agric Biol 5(2):179–180

    Google Scholar 

  • Bacilio M, Rodriguez H, Moreno M, Hernandez JP, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Boil Fertil Soil 40:188–193

    CAS  Google Scholar 

  • Bates LS, Waldern R, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Campbell SA, Close TL (1997) Dehydrin under water stress and its association with phenotypic traits. Plant Physiol 47:61–74

    Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281. doi:10.1023/A:1010564013601

    Article  CAS  Google Scholar 

  • Capell B, Doerffling K (1993) Genotypic specific differences in chilling tolerance of maize to chilling induced changes in water status and abscisic acid accumulation. Physiol Plant 88:683–694. doi:10.1111/j.1399-3054.1993.tb01383.x

    Article  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grow at low and high phosphorous concentration. Biol Fertil Soils 44:501–509. doi:10.1007/s00374-007-0232-8

    Article  CAS  Google Scholar 

  • Diouf D, Duponnois R, Tidiane Ba A, Neyra M, Lesueur D (2005) Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Funct Plant Biol 32:1143–1152, doi:10.1071/FP04069

    Article  CAS  Google Scholar 

  • Dixon RK, Garg VK, Rao MV (1993) Inoculation of Leucaena and Prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedlings growth. Arid Soil Res Rehabil 7:133–144

    Google Scholar 

  • Fatima Z, Zia M, Fayyaz M (2006) Effect of Rhizobium and phosphorus on growth of soybean (Glycine max) and survival of Rhizobium & P solubilizing bacteria. Pak J Bot 38:259–464

    Google Scholar 

  • Fernandez LA, Zalba P, Gomez MA, Sagordoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under green house conditions. Boil Fertil Soil 43:805–810. doi:10.1007/s00374-007-0172-3

    Article  CAS  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50. doi:10.1016/S0098-8472(01)00109-5

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312. doi:10.1007/s00572-003-0274-1

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175. doi:10.1007/s00374-003-0636-z

    Article  Google Scholar 

  • Goldstein AH (1986) Bacterial phosphate solubilization: historical perspective and future prospective. Am J Altern Agric 1:57–65

    Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity mineral nutrient relations in horticultural crops. Sci Hortic (Amsterdam) 78:127–157. doi:10.1016/S0304-4238(98)00192-7

    Article  CAS  Google Scholar 

  • Gupta RB, Masci S, Lafiandra D, Bariana HS, MacRitchie F (1995) Accumulation of protein subunits and their polymers in developing grains of hexaploid wheat. J Exp Bot 47:1377–1385. doi:10.1093/jxb/47.9.1377

    Article  Google Scholar 

  • Gyaneshwar P, Naresh KG, Parekh LJ (2002) Effect of buffering on the phosphate solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673. doi:10.1023/A:1008852718733

    Article  Google Scholar 

  • Hartmond U, Schaesberg NV, Graham JH, Syverten JP (1987) Salinity and flooding stress effects on mycorrhizal and nonmycorrhizal citrus rootstock seedlings. Plant Soil 104:37–43. doi:10.1007/BF02370622

    Article  Google Scholar 

  • Hua SST, Tsai VY, Lichens GM, Noma AT (1982) Accumulation of amino acids in Rhizobium sp. strain WRlOOl in response to NaCl salinity. Appl Environ Microbiol 44:135–140

    PubMed  CAS  Google Scholar 

  • Jagnow G (1990) Differences between cereal crop cultivars in root associated nitrogen fixation, possible causes of variable yield response to seed inoculation. Plant Soil 123:255–259. doi:10.1007/BF00011278

    Article  CAS  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnuts (Arachis hypogyea L.). Plant Cell Rep 20:463–468. doi:10.1007/s002990100353

    Article  CAS  Google Scholar 

  • Kafkafi U (1984) Plant nutrition under saline conditions. In: Shainberg I, Shalhevet J (eds) Soil salinity under irrigation processes and management. Springer, Berlin, pp 319–338

    Google Scholar 

  • Kirch JTO (1968) Studies on the dependence of chlorophyll synthesis on protein synthesis in Euglena agracilis together with a monogram for the determination of chlorophyll concentration. Planta 78:200–207

    Google Scholar 

  • Läuchli A, Wieneke J (1979) Studies on growth and distribution of Na+, K+, and Cl in soybean varieties differing in salt tolerance. Z Pflanzenern Bodenk 142:3–13. doi:10.1002/jpln.19791420103

    Article  Google Scholar 

  • Lowry OH, Poesenbrough NJ, Fal AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lukiwatid R, Simanungalid RDM (2002) Dry matter yield, N and P uptake of soyabean with Glomus manihitis and Bradyrhizobium japonicum. 17th WCSS, 14 August, Thailand. 190-1-1190-8

  • Lutts S, Kinet JM, Bouharmont J (1996a) NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot (Lond) 78:389–398. doi:10.1006/anbo.1996.0134

    Article  CAS  Google Scholar 

  • Lutts S, Majerus V, Kinet JM (1996b) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Plant Physiol 105:450–458

    Google Scholar 

  • Lynch J, Läuchli A (1985) Salt stress disturbs the calcium nutrition of barley (Hordeum vulgare L.). New Phytol 99:345–354. doi:10.1111/j.1469-8137.1985.tb03662.x

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  • Mirza BS, Mirza MS, Bano A, Malik KA (2007) Coinoculation of chickpea with Rhizobium isolates from roots and nodules and phytohormone-producing Enterobacter strains. Aust J Exp Agric 47(8):1008–1015. doi:10.1071/EA06151

    Article  Google Scholar 

  • Morgan JM, Rodriguez MB, Knight EJ (1991) Adaptation to water deficit in chickpea breeding lines by osmoregulation relationship to grain yield in the field. Field Crops Res 27:61–70. doi:10.1016/0378-4290(91)90022-N

    Article  Google Scholar 

  • Nayyar H (2003) Variation in osmoregulation in differentially drought sensitive wheat genotypes involves calcium. Biol Plant 47:541–547. doi:10.1023/B:BIOP.0000041059.10703.11

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Rai R, Nasar SK, Singh TS, Prasad JV (1985) Interaction between Rhizobium strains and lentil (Lens culinaris) genotype under salt stress. J Agric Sci 39:57–66

    Google Scholar 

  • Rashid A (1986) Mapping zinc fertility of soils using indicator plants and soil analysis. PhD dissertation, Univ. Hawaii. In: John R, Estefan G, Rashid A (eds) Soil and Plant Analysis Laboratory Manual. ICARAD Aleppo, Syria, pp 135–137

  • Rozema J (1999) Agricultural problems of saline arable lands in Pakistan. In: Rozema J, Verkieji A.C. (eds) Ecological responses to environmental stresses. Kluwer, Dordrecht, pp 278–288

    Google Scholar 

  • Soussi M, Ocana A, Lluch C (2001) Growth, nitrogen fixation and ion accumulation in two chickpea cultivars under salt stress. Agricoltura Mediterranea 131:45–51

    Google Scholar 

  • Steel RGD, Torrei JH (1980) Principle and procedures of statistics. McGraw Hill, New York, pp 232–251

    Google Scholar 

  • Unno H, Maeda Y, Yamamoto S, Okamoto M, Takenaga H (2002) Relationship between salt tolerance and Ca2+ retention among plant species. Jpn J Soil Sci Plant Nutr 73:715–718

    CAS  Google Scholar 

  • Wenxue W, Bilsborrow PE, Hooley P, Fincham DA, Lombi E, Forster BP (2003) Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil 250:183–191. doi:10.1023/A:1022832107999

    Article  Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling-enhanced evidence for the role of singlet oxygen and antioxidants. Plant Physiol 83:278–282

    Article  PubMed  CAS  Google Scholar 

  • Yap SF, Lim ST (1983) Response of Rhizobium sp. UMKL 20 to sodium chloride stress. Arch Microbiol 135:224–228. doi:10.1007/BF00414484

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors express their deep senses of gratitude to Prof Dr. Paolo Nannipieri, Editor-in-Chief, Biology and Fertility of Soils, for his comments, valuable suggestion, and editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghari Bano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bano, A., Fatima, M. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas . Biol Fertil Soils 45, 405–413 (2009). https://doi.org/10.1007/s00374-008-0344-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0344-9

Keywords

Navigation