Skip to main content

Advertisement

Log in

Straw harvesting, fertilization, and fertilizer type alter soil microbiological and physical properties in a loblolly pine plantation in the mid-south USA

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Harvesting fallen needles (straw) in loblolly pine (Pinus taeda L.) plantations provides forest owners with a substantial source of income, but this practice and the type of fertilizer used to replenish nutrients removed with straw harvests may alter soil microbiological and physical properties. This study was conducted to explore the influence of annual straw harvesting, fertilization, and fertilizer source (inorganic vs. broiler poultry litter) in a loblolly pine plantation in the mid-south USA on: (1) soil microbial biomass C, (2) soil dehydrogenase activity, and (3) key soil physical properties (soil strength, bulk density, porosity, aeration, soil moisture content, organic matter, and available water holding capacity). All treatments that included straw harvesting increased bulk density and reduced soil porosity. Annual straw harvesting conducted with annual fertilization of inorganic nitrogen and phosphorus fertilization was associated with the most pronounced increases in soil strength and reductions in organic matter, available water holding capacity, microbial biomass C, and dehydrogenase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adeli A, Sistani KR, Bal, a MF, Rowe DE (2005) Phosphorus dynamics in broiler litter-amended soils. Commun Soil Sci Plant Anal 36:1099–1115 doi:10.1081/CSS-200056876

    Article  CAS  Google Scholar 

  • Alef K (1995) Dehydrogenase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, San Diego, CA, pp 228–231

    Google Scholar 

  • Ben-Dor E, Banin A (1989) Determination of organic matter content in arid-zone soils using a simple “loss on ignition” method. Commun Soil Sci Plant Anal 20:1675–1695

    Article  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis, part 1: physical and mineralogical methods,. 2nd edn. SSSA, Madison, WI, pp 363–375

    Google Scholar 

  • Blazier MA, Hennessey TC, Deng SP (2005) Effects of fertilization and vegetation control on microbial biomass carbon and dehydrogenase activity in a juvenile loblolly pine plantation. For Sci 51:449–459

    Google Scholar 

  • Blazier MA, Gaston LA, Clason TR, Farrish KW, Oswald BP, Evans HA (2008) Nutrient dynamics and tree growth of silvopastoral systems: impact of poultry litter. J Environ Qual 37:1546–1558

    Article  PubMed  CAS  Google Scholar 

  • Bradford JM (1986) Penetrability. In: Klute A (ed) Methods of soil analysis, Part 1: physical and mineralogical methods,. 2nd edn. SSSA, Madison, WI, pp 463–478

    Google Scholar 

  • Breland TA, Hansen S (1996) Nitrogen mineralization and microbial biomass as affected by soil compaction. Soil Biol Biochem 28:655–663 doi:10.1016/0038-0717(95)00154-9

    Article  CAS  Google Scholar 

  • Brye KR (2003) Long-term effects of cultivation on particle size and water-retention characteristics determined using wetting curves. Soil Sci 168:459–468 doi:10.1097/00010694-200307000-00001

    Article  CAS  Google Scholar 

  • Brye KR, Slaton NA, Norman RJ, Savin MC (2004) Short-term effects of poultry litter form and rate on soil bulk density and water content. Commun Soil Sci Plant Anal 35:2311–2325 doi:10.1081/CSS-200030655

    Article  CAS  Google Scholar 

  • Busse MD, Cochran PH, Barrett JW (1996) Changes in ponderosa pine site productivity following removal of understory vegetation. Soil Sci Soc Am J 60:1614–1621

    CAS  Google Scholar 

  • Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol Biochem 33:1777–1789 doi:10.1016/S0038-0717(01)00103-1

    Article  CAS  Google Scholar 

  • Busse MD, Beattie SE, Powers RF, Sanchez FG, Tiarks AE (2006) Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control. Can J Res 36:577–588 doi:10.1139/x05-294

    Article  CAS  Google Scholar 

  • Camiña F, Trasar-Cepeda C, Gil-Sotres F, Leirós C (1998) Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biol Biochem 30:1005–1011 doi:10.1016/S0038-0717(98)00010-8

    Article  Google Scholar 

  • Canali S, Tinchera A, Intrigliolo F, Pompili L, Nisini L, Mocali S et al (2004) Effect of long term addition of composts and poultry manure on soil quality of citrus orchards in Southern Italy. Biol Fertil Soils 40:206–210 doi:10.1007/s00374-004-0759-x

    Article  Google Scholar 

  • Daddow RL, Warrington GE (1983) Growth-limiting soil bulk densities as influenced by soil texture. USDA Forest Service, Watershed Sys Dev Group Rep WSDG-TN-00005

  • Danielson RE, Sutherland PL (1986) Porosity. In: Klute A (ed) Methods of soil analysis, part 1: physical and mineralogical methods,. 2nd edn. SSSA, Madison, WI, pp 443–461

    Google Scholar 

  • Deng SP, Parham JA, Hattey JA, Babu D (2006) Animal manure and anhydrous ammonia amendment alter microbial carbon use efficiency, microbial biomass, and activities of dehydrogenase and amidohydrolases in semiarid agroecosystems. Appl Soil Ecol 33:258–268 doi:10.1016/j.apsoil.2005.10.004

    Article  Google Scholar 

  • Diaz-Raviña M, Acea MJ, Carballas T (1993) Microbial biomass and its contribution to nutrient concentrations in forest soils. Soil Biol Biochem 25:25–31 doi:10.1016/0038-0717(93)90237-6

    Article  Google Scholar 

  • Dickens ED (1999) Effect of inorganic and organic fertilization on longleaf pine tree growth and pine straw production. In: Haywood JD (ed) Proceedings of the 10th Biennial Southern Silvicultural Research Conference, Shreveport, LA, Feb. 16–18, 1999. Gen. Tech. Rep. SRS-30, Asheville, NC. USDA Forest Service, Southern Research Station. pp 464–468

  • Donegan KK, Watrud LS, Seidler RJ, Maggard SP, Shiroyama T, Porteous LA et al (2001) Soil and litter organisms in Pacific Northwest forests under different management practices. Appl Soil Ecol 18:159–175 doi:10.1016/S0929-1393(01)00155-X

    Article  Google Scholar 

  • Duryea ML, Edwards JC (1989) Pine-straw management in Florida’s forest. FL Coop Ext Serv. Inst Food Agric Sci Cir 831, University of Florida, Gainsville, FL, 5 p

  • Fauci F, Dick RP (1994) Microbial biomass as an indicator of soil quality: effects of long-term management and recent soil amendments. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA, Madison, WI, pp 229–234

    Google Scholar 

  • Friend AL, Roberts SD, Schoenholtz SH, Mobley JA, Gerard PD (2006) Poultry litter application to loblolly pine forests: growth and nutrient containment. J Environ Qual 35:837–848 doi:10.2134/jeq2005.0244

    Article  PubMed  CAS  Google Scholar 

  • Gallardo A, Schlesinger WH (1994) Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol Biochem 26:1409–1415 doi:10.1016/0038-0717(94)90225-9

    Article  Google Scholar 

  • Gee GW, Campbell MD, Campbell GS, Campbell JH (1992) Rapid measurement of low soil water potentials using a water activity meter. Soil Sci Soc Am J 56:1068–1070

    Google Scholar 

  • Gilman EF (1987) Where are tree roots? Env Hort Dept, Fl Coop Ext Serv, Inst Food Ag Sci, Univ Fl, Ext Bull ENH137

  • Harris JA (2003) Measurements of the soil microbial community for estimating the success of restoration. Eur J Soil Sci 54:801–808 doi:10.1046/j.1351-0754.2003.0559.x

    Article  Google Scholar 

  • Haywood JD, Tiarks AE, Elliott-Smith ML, Pearson HR (1995) Management of longleaf pine stands for pine straw harvesting and the subsequent influence on forest productivity. In: Edwards MB (ed) Proceedings of the 8th Biennial Southern Silvicultural Research Conference, Auburn, AL, Nov. 1–3, 1994. Gen. Tech. Rep. SRS-1, Asheville, NC. USDA Forest Service, Southern Research Station, pp 218–288

  • Haywood JD, Tiarks AE, Elliott-Smith ML, Pearson HA (1998) Response of direct seeded Pinus palustris and herbaceous vegetation to fertilization, burning, and pine straw harvesting. Biomass Bioenergy 14:157–167 doi:10.1016/S0961-9534(97)10029-0

    Article  CAS  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792 doi:10.1038/35081058

    Article  PubMed  Google Scholar 

  • Horwath WR, Paul EA, Harris D, Norton J, Jagger L, Horton KA (1996) Defining a realistic control for the chloroform fumigation–incubation method using microscopic counting and 14C-substrates. Can J Soil Sci 76:459–467

    CAS  Google Scholar 

  • Jenkinson DS, Powlson DS (1976a) The effects of biocidal treatments on metabolism in soil-I. Fumigation with chloroform. Soil Biol Biochem 8:167–177 doi:10.1016/0038-0717(76)90001-8

    Article  CAS  Google Scholar 

  • Jenkinson DS, Powlson DS (1976b) The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass. Soil Biol Biochem 8:209–213 doi:10.1016/0038-0717(76)90005-5

    Article  CAS  Google Scholar 

  • Kaiser EA, Walenzik G, Heinemeyer O (1991) The influence of soil compaction in decomposition of plant residues and on microbial biomass. In: Wilson WS (ed) Advances in soil organic matter research: the impact on agriculture and the environment. Royal Society of Chemistry, Cambridge, pp 207–216

    Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832 doi:10.2134/jeq2007.0099

    Article  PubMed  CAS  Google Scholar 

  • King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty PM (2002) Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol 154:389–398 doi:10.1046/j.1469-8137.2002.00393.x

    Article  Google Scholar 

  • Kingery WL, Wood CW, Delaney DP, Williams JC, Mullins GL (1994) Impact of long-term land application of broiler litter on environmentally related soil properties. J Environ Qual 23:139–147

    Google Scholar 

  • Landi L, Renella G, Moreno JL, Falchini L, Nannipieri P (2000) Influence of cadmium on the metabolic quotient, l-:d-glutamic acid respiration ratio and enzyme activity:microbial biomass under laboratory conditions. Biol Fertil Soils 32:8–16 doi:10.1007/s003740000205

    Article  CAS  Google Scholar 

  • Lee K, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a fertilization gradient. For Ecol Manage 185:263–273

    Article  Google Scholar 

  • Lenhard G (1956) The dehydrogenase activity in soil as a measure of the activity of soil microorganisms. Z. Pflanzenernah Dung Bodenkd 73:1–11 doi:10.1002/jpln.19560730102

    Article  CAS  Google Scholar 

  • Lopez-Zamora I, Duryea ML, McCormac Wild C, Comerford NB, Neary DG (2001) Effect of pine needle removal and fertilization on tree growth and soil P availability in a Pinus elliottii Engelm. Var. elliottti stand. For Ecol Manage 148:125–134

    Article  Google Scholar 

  • Luizao RC, Bonde TA, Rosswall T (1992) Seasonal variation of soil microbial biomass: the effects of clearfelling a tropical rainforest and establishment of pasture in the central Amazon. Soil Biol Biochem 24:805–813 doi:10.1016/0038-0717(92)90256-W

    Article  Google Scholar 

  • Matthews SD, Reynolds EF, Colvin GP, Weems TA, Ray CA, Seaholm JE et al (1974) Soil Survey of Ouachita Parish, Louisiana. Soil Conservation Service, US Department of Agriculture. US Government Printing Office, Washington, DC

    Google Scholar 

  • Mills R, Robertson DR (1991) Production and marketing of Louisiana pine straw. Louisiana Cooperative Extension Service, Louisiana State University Agricultural Center. Pub 2430:9

  • Morris LA, Jokela EJ, O, Conner JB Jr (1992) Silvicultural guidelines for pinestraw management in the southeastern United States. Ga For Comm For Res Pap 88:11

    Google Scholar 

  • Munkholm LJ, Schjønning P, Debosz K, Jensen HE, Christensen BT (2002) Aggregate strength and mechanical behavior of a sandy loam under long-term fertilization treatments. Eur J Soil Sci 53:129–137 doi:10.1046/j.1365-2389.2002.00424.x

    Article  Google Scholar 

  • Munsinger RA, McKinney R (1982) Modern Kjeldahl systems. Am Lab 14:76–79

    CAS  Google Scholar 

  • Page-Dumroese DS, Jurgensen MF, Tiarks AE, Ponder F Jr, Sanchez FG, Fleming RL et al (2006) Soil physical property changes at the North American long-term soil productivity study sites: 1 and 5 years after compaction. Can J Res 36:551–564 doi:10.1139/x05-273

    Article  Google Scholar 

  • Plaza C, Hernández D, García-Gil JC, Polo A (2004) Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biol Biochem 36:1577–1585 doi:10.1016/j.soilbio.2004.07.017

    Article  CAS  Google Scholar 

  • Powers RF, Tiarks AE, Boyle JR (1998) Assessing soil quality: Practicable standards for sustainable forest productivity in the United States of America. In: Adams MB (ed) The contribution of soil science to the development of and implementation of criteria and indicators of sustainable forest management. SSSA Special Publ No 53. SSSA, Madison WI, pp 53–80

    Google Scholar 

  • Powers RF, Scott DA, Sanchez FG, Voldseth RA, Page-Dumroese D, Elioff JD, Stone DM (2005) The North American long-term soil productivity experiment: findings from the first decade of research. For Ecol Manage 220:31–50

    Article  Google Scholar 

  • Powlson DS, Brookes PC (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164 doi:10.1016/0038-0717(87)90076-9

    Article  CAS  Google Scholar 

  • Pritchett WL, Fisher RF (1987) Forest soil biology. In: Properties and management of forest soils, 2nd edn. Wiley, New York, NY, pp 77–94

    Google Scholar 

  • Roise JP, Chung J, Lancia R (1991) Red-cockaded woodpecker habitat management and longleaf pine straw production: an economic analysis. S J Appl For 15:88–92

    Google Scholar 

  • Samuelson LJ, Wilhoit J, Stokes T, Johnson J (1999) Influence of poultry litter fertilization on an 18-year-old loblolly pine stand. Commun Soil Sci Plant Anal 30:509–518

    CAS  Google Scholar 

  • SAS Institute (2006) Base SAS 9.1.3 procedures guide. SAS Institute, Cary, NC

    Google Scholar 

  • Shestak CJ, Busse MD (2005) Compaction alters physical but not biological indices of soil health. Soil Sci Soc Am J 69:236–246

    CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Bigham JM (ed) Methods of soil analysis part 2: microbiological and biochemical properties. SSSA, Madison, WI, pp 775–833

    Google Scholar 

  • Tan X, Chang SX, Kabzems R (2005) Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study. For Ecol Manage 217:158–170

    Article  Google Scholar 

  • Tan X, Chang SX, Kabzems R (2008) Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol Fertil Soils 44:471–479 doi:10.1007/s00374-007-0229-3

    Article  Google Scholar 

  • Taylor HM, Burnett E (1964) Influence of soil strength on root-growth habits of plants. Soil Sci 98:174–180

    Article  Google Scholar 

  • Taylor HM, Gardner HR (1963) Penetration of cotton seedling taproots as influenced by bulk density, moisture content, and strength of soil. Soil Sci 96:153–156

    Google Scholar 

  • Tekeste M, Hatzhghi DH, Stroonsnijder L (2007) Soil strength assessment using threshold probability approach on soils from three agro-ecological zones in Eritrea. Biosystems Eng 98:470–478

    Google Scholar 

  • Thalmann A (1968) Zur methodic der bestimmung der dehydrogenaseaktivität im boden mittels triphenyltetrazolumchlorid (TTC). Landwirtsch Forsch 21:249–258

    CAS  Google Scholar 

  • Tiarks AE, Haywood JD (1996) Site preparation and fertilization effects on growth of slash pine for two rotations. Soil Sci Soc Am J 60:1654–1663

    CAS  Google Scholar 

  • Wagner GH, Wolf DC (1999) Carbon transformations and soil organic matter formation. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, NJ, pp 218–258

    Google Scholar 

  • Weaver T (1998) Managing poultry manure nutrients. Agric Res 46:12–13

    Google Scholar 

  • Zarcinas BA, Cartwright B, Spouncer LR (1987) Nitric acid digestion and multi-nutrient analysis of plant material by inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal 18:131–146

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Blazier.

Additional information

This publication has been approved by the Director of the Louisiana Agricultural Experiment Station as manuscript 2008-256-1648.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blazier, M.A., Patterson, W.B. & Hotard, S.L. Straw harvesting, fertilization, and fertilizer type alter soil microbiological and physical properties in a loblolly pine plantation in the mid-south USA. Biol Fertil Soils 45, 145–153 (2008). https://doi.org/10.1007/s00374-008-0316-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0316-0

Keywords

Navigation