Skip to main content
Log in

Achromobacter insolitus and Zoogloea ramigera associated with wheat plants (Triticum aestivum)

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

This study reports for the first time the presence of diazotrophic bacteria belonging to the genera Achromobacter and Zoogloea associated with wheat plants. These bacterial strains were identified by the analysis of 16S rDNA sequences. The bacterium IAC-AT-8 was identified as Azospirillum brasiliense, whereas isolates IAC-HT-11 and IAC-HT-12 were identified as Achromobacter insolitus and Zoogloea ramigera, respectively. A greenhouse experiment involving a non-sterilized soil was carried out with the aim to study the endophytic feature of these strains. After 40 days from inoculation, all the strains were in the inner of roots, but they were not detected in soil. In order to assess the location inside wheat plants, an experiment was conducted under axenic conditions. Fifteen days after inoculation, preparations of inoculated plants were observed by the scanning electron microscope, using the cryofracture technique, and by the transmission electron microscope. It was observed that all isolates were present on the external part of the roots and in the inner part at the elongation region, in cortex cells, but not in the endodermis or in the vascular bundle region. No colonizing bacterial cells were observed in wheat leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77:549–579

    PubMed  CAS  Google Scholar 

  • Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46:229–236

    Article  PubMed  CAS  Google Scholar 

  • Bilal R, Malik K (1987) Isolation and identification of a N2-fixing Zoogloea-forming bacterium from kallar grass histoplane. J Appl Bacteriol 62:289–294

    CAS  Google Scholar 

  • Döbereiner J, Baldani JI, Baldani VLD (1995) Como isolar e identificar bactérias diazotróficas de plantas não leguminosas. EMBRAPA, SPI, Brasília and EMBRAPA, CNPAB, Itaguaí

  • Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soil 33:410–415

    Article  Google Scholar 

  • Germida JJ, Siciliano SD, Freitas JR, Seib AM (1998) Diversity of root-associated bacteria with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Gerk LP, Gilchrist K, Kennedy IR (2000) Mutants with enhance nitrogenase activity in hydroponic Azospirillum brasilense–wheat associations. Appl Environ Microbiol 66:2175–2184

    Article  CAS  Google Scholar 

  • Godon JJ, Zumstein E, Dabert P, Habouzit F, Moltta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813

    PubMed  CAS  Google Scholar 

  • Goertz RD, Pengra RM (1960) Physiology of nitrogen fixation by a species of Achromobacter. J Bacteriol 81:568–572

    Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  PubMed  CAS  Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases accumulation in aluminium-tolerant rice varieties. New Phytologist 154:131–145

    Article  CAS  Google Scholar 

  • Hashidoko Y, Tada M, Tahara S (2002) Soft gel medium solidified with gellan gum for preliminary screening for root-associating, free-living nitrogen-fixing bacteria inhabiting the rhizoplane of plants. Biosci Biotechnol Biochem 66:2259–2263

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. University of California, Irvine

    Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant–Microb Interact 17:1078–1085

    Article  CAS  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • James EK, Olivares FL (1997) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • Kimura M (1980) A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software, Arizona State University, Tempe, Arizona, USA. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Academic, Chichester, UK, pp 115–175

  • Levanony H, Bashan Y, Romano B, Klein E (1989) Ultrastructural localization and identification of Azospirillum brasilense Cd on and within wheat root by immuno-gold labeling. Plant and Soil 117:207–218

    Article  Google Scholar 

  • Liu Y, Chen S, Li J (2003) Colonization pattern of Azospirillum brasilense Yu62 on maize roots. Acta Botânica Sínese 45:748–752

    Google Scholar 

  • Mayak S, Tirosh T, Glick B (2004a) Plant growth-promoting bacteria that confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick B (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Norberg AB, Enfors S (1982) Production of extracellular polysaccharide by Zoogloea ramigera. Appl Environ Microbiol 44:1231–1237

    PubMed  CAS  Google Scholar 

  • Pesaro M, Widmer F (2006) Identification and specific detection of a novel Pseudomonadaceae cluster associated with soils from winter wheat plots of a long-term agricultural field experiment. Appl Environ Microbiol 72:37–43

    Article  PubMed  CAS  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York

  • Pitcher DG, Saunders NA, Owens RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  • Saito N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Saito T, Saegusa H, Myata Y, Fukiu T (1992) Intracellular degradation of poly(3-hydroxybutyrate) granules of Zoogloea ramigera I-16-M. FEMS Microbiol Rev 103:333–338

    Article  CAS  Google Scholar 

  • Sala VMR, Freitas SS, Donzeli VP, Freitas JG, Gallo PB, Silveira APD (2005) Ocorrência e efeito de bactérias diazotróficas em genótipos de trigo. Revista Brasileira de Ciência do Solo 29:345–352

    Article  Google Scholar 

  • Sala VMR, Freitas SS, Silveria APD (2007a) Interaction between arbuscular mycorrhizal fungi and diazotrophic bacteria in wheat plants. Pesq Agropec Bras 42:1593–1600

    Google Scholar 

  • Sala VMR, Cardoso EJBN, Freitas JG, Silveria APD (2007b) Wheat genotype response to inoculation of diazotrophic bacteria in field conditions. Pesq Agropec Bras 42:833–842

    Google Scholar 

  • Steenhoudt O, Vaderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ, Clustal W (1994) Improving the sensitivity of progressive multiple alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, Bruijn FD, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic associations between Rhizobium leguminosarum bv. Trifolii and rice roots and assessment of its potential to promote rice growth. Plant and Soil 194:99–114

    Article  CAS  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris B, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta R, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Euan James for helpful suggestions to the manuscript, the technician Mônica L. Rossi for her help in the analyses involving electron microscopy, CAPES for granting a fellowship, and to FAPESP for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Parada Dias da Silveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sala, V.M.R., Cardoso, E.J.B.N., Garboggini, F.F. et al. Achromobacter insolitus and Zoogloea ramigera associated with wheat plants (Triticum aestivum). Biol Fertil Soils 44, 1107–1112 (2008). https://doi.org/10.1007/s00374-008-0292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0292-4

Keywords

Navigation