Skip to main content

Advertisement

Log in

Meeting the challenge of scaling up processes in the plant–soil–microbe system

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The scaling up of processes in the plant–soil–microbe system represents one of the greatest challenges facing environmental scientists and yet is essential for sustainable land management worldwide. The latter encompasses, for example, the mitigation of and adaptation to anthropogenic climate change, the bioremediation of industrially contaminated sites, catchment management of human pathogens such as Escherichia coli O157 and integrated crop management on the farm. Scaling up is also essential for the regional and global biogeochemical modelling that will inform policy-makers of the critical environmental factors driving climate change. Despite increasing understanding of the links between gene expression and process on a microscale, there is still much progress to be made when relating this to processes at the macroscale. In this paper, we explore the challenges this poses and examine key case studies of successful up-scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The application of scaling rules to energy flow in stream ecosystems. National Science Foundation, USA.

References

  • Artz RRE, Killham K (2002) Survival of Escherichia coli O157:H7 in private drinking water wells: influences of protozoan grazing and elevated copper concentrations. FEMS Microbiol Lett 216:117–122

    Article  PubMed  CAS  Google Scholar 

  • Artz REE, Townend J, Brown K, Towers W, Killham K (2005) Soil macropores and compaction control the leaching potential of Escherichia coli O157:H7. Environ Microbiol 7:241–248

    Article  PubMed  Google Scholar 

  • Baggs EM, Blum H (2004) CH4 oxidation and CH4 and N2O emissions from Lolium perenne swards under elevated atmospheric CO2. Soil Biol Biochem 36:713–723

    Article  CAS  Google Scholar 

  • Baggs EM, Richter M, Cadisch G, Hartwig UA (2003) Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biol Biochem 35:729–732

    Article  CAS  Google Scholar 

  • Bakken Dörsch LP (2007) Nitrous oxide emission and global changes: modelling approaches. In: Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier Science, New York, pp 381–395

    Google Scholar 

  • Balser TC, McMahon KD, Bart D, Bronson D, Coyle DR, Craig N, Flores-Mangual ML, Forshay K, Jones SE, Kent AE, Shade AL (2006) Bridging the gap between micro- and macro-scale perspectives on the role of microbiological communities in global change ecology. Plant Soil 289:59–70

    Article  CAS  Google Scholar 

  • Campbell GR, Prosser J, Glover LA, Killham K (2001) Detection of Escherichia coli O157:H7 in soil and water using multiplex PCR. J Appl Microbiol 91:1–7

    Article  Google Scholar 

  • Darrah PR, Roose T (2007) Modeling the rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. 2nd edn. CRC Press, Boca Raton, FL, pp 331–370

    Google Scholar 

  • Deiglmayr K, Philippot L, Hartwig UA, Kandeler E (2004) Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric pCO2. FEMS Microbiol Ecol 49:445–454

    Article  CAS  PubMed  Google Scholar 

  • De La Fuente L, Mavrodi DV, Landa BB, Thomashow LS, Weller DM (2006) phlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Microbiol Ecol 56:64–78

    Article  PubMed  CAS  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Kulmala AE, Phongpan S (2000) General model for N2O and N2 gas emissions from soils due to denitrification. Glob Biogeochem Cycles 14:1045–1060

    Article  CAS  Google Scholar 

  • Dobbie KE, Smith KA (2006) The effect of water table depth on emissions of N2O from a grassland soil. Soil Use Manag 22:22–28

    Article  Google Scholar 

  • Dubey SK, Tripathi AK, Upadhyay SN (2006) Exploration of soil bacterial communities for their potential as bioresource. Bioresour Technol 97:2217–2224

    Article  PubMed  CAS  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Enwall K, Philippot L, Hallin S (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71:8335–8343

    Article  PubMed  CAS  Google Scholar 

  • Farrar J, Hawes M, Jones DL, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Article  Google Scholar 

  • Feeny DS, Crawford JW, Daniell T, Hallett PD, Nunan N, Ritz K, Rivers M, Young IM (2006) Three-dimensional microoorganisation of the soil-root-microbe system. Microbiol Ecol 52:151–158

    Article  Google Scholar 

  • Fitzpatrick, EA (1999) Interactive soils (CD-ROM), PO Box 10298, Aberdeen AB10 6WW, UK

  • Herrmann AM, Clode PL, Fletcher IR, Nunan N, Stockdale EA, O’Donnel AG, Murphy DV (2007) A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid Commun Mass Spectrom 21:29–34

    Article  PubMed  CAS  Google Scholar 

  • Horswell J, Weitz HJ, Percival HJ, Speir TW (2006) Impact of heavy metal amended sewage sludge on forest soils as assessed by bacterial and fungal biosensors. Biol Fertil Soils 42:569–576

    Article  Google Scholar 

  • IPCC (2007) Working group 1 report: The physical science basis. http://www.ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Killham K, Paton GI (2003) Intelligent site assessment: a role for ecotoxicology. In: Singleton I, Milner MG, Head IM (eds) Bioremediation: a critical review. Horizon Press, North Vancouver

  • Killham K, Staddon W (2002) Bioindicators and sensors of soil health and the application of geostatistics. In: Burns RG, Dick RP (eds) Enzymes in the environment. Dekker, . New York, NY, pp 391–406

    Google Scholar 

  • Killham K, Yeomans C (2001) Rhizosphere carbon flow measurement and implications: from isotopes to reporter genes. Plant Soil 233:91–96

    Article  Google Scholar 

  • Kragelund L, Christoffersen B, Nybroe O, De Bruijn FJ (1995) Isolation of lux reporter gene fusions in Pseudomonas fluorescens DF57 inducible by nitrogen or phosphorus starvation. FEMS Microbiol Ecol 17:95–106

    Article  CAS  Google Scholar 

  • Li CS, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events. 1. Model structure and sensitivity. J Geophys Res Atmos 97:9759–9776

    CAS  Google Scholar 

  • Lu Y, Abraham W-R, Conrad R (2007) Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ Microbiol 9:474–481

    Article  PubMed  CAS  Google Scholar 

  • Manefield M, Griffiths RI, Bailey MJ, Whiteley As (2006) Stable isotope probing: a critique of its role in linking phylogeny and function. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Heidelberg, Germany, pp 205–216

    Chapter  Google Scholar 

  • McSpadden Gardener BB (2007) Diversity and ecology of biocontrol Pseudomonas spp. in agricultural systems. Phytopathology 97:221–226

    Google Scholar 

  • Meselson M, Stahl FW (1958) The replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A 44:671–682

    Article  PubMed  CAS  Google Scholar 

  • Milne E, Al-Adamat R, Batjes NH, Bernoux M, Bhattacharyya T, Cerri CC, Cerri CEP, Coleman K, Easter M, Falloon P, Feller C, Gicheru P, Kamoni P, Killian K, Pal DK, Paustian K, Powlson D, Rawajfih Z, Sessay M, Williams S, Wokabi S (2007) National and sub national assessments of soil organic carbon stocks and changes: the GEFSOC modelling system. Soil carbon stocks at regional scales. Agric Ecosyst Environ 122:3–12

    Article  CAS  Google Scholar 

  • Newman DK, Banfield JF (2002) Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science 296:1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Pachepsky Y, Crawford JW, Rawls WJ (2000) Fractals in soil science (developments in soil science 27). Elsevier, New York

    Google Scholar 

  • Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5:109–131

    Article  CAS  Google Scholar 

  • Parton WJ, Ojima DS, Cole CV, Schimel DS (1994) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Bryant RB, Arnold RW (eds) Quantitative modeling of soil forming processes. Soil Science Society of America, Madison, WI, pp 147–16

    Google Scholar 

  • Paton GI, Campbell CD, Cresser MS, Glover LA, Rattray EAS, Killham K (1995) Bioluminescence-based ecotoxicity testing of soil and water. OECD special publication on Bioremediation, Tokyo 94. OECD Press, Tokyo, pp 547–552

    Google Scholar 

  • Pattey E, Strachan IB, Desjardins RL, Edwards GC, Dow D, MacPherson JI (2006) Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques. Agric For Meteorol 136:222–236

    Article  Google Scholar 

  • Paustian K (2001) Modeling soil organic matter dynamics-global changes. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. CABI International, Wallingford, UK, pp 43–53

    Google Scholar 

  • Paustian K, Elliot ET, Collins HP, Vernon Cole C, Paul E (1995) Using a network of long-term experiments for analysis of soil carbon dynamics and global change: the North American model. Aust J Exp Agric 35:929–939

    Article  Google Scholar 

  • Paustian K, Levine E, Post WM, Ryzhova IM (1997) The use of models to integrate information and understanding of soil C at the regional scale. Geoderma 79:227–260

    Article  CAS  Google Scholar 

  • Prosser JI, Rangel-Castro JI, Killham K (2006) Studying plant–microbe interactions using stable isotope technologies. Curr Opin Biotechnol 17:98–102

    Article  PubMed  CAS  Google Scholar 

  • Rangel-Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM, Ineson P, Mehar A, Prosser JI (2005) Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol 7:828–838

    Article  PubMed  CAS  Google Scholar 

  • Ritchie JM, Campbell GR, Shepherd J, Beaton Y, Jones D, Killham K, Artz RRE (2003) A stable bioluminescent construct of Escherichia coli O157:H7 for hazard assessments of long-term survival in the environment. Appl Environ Microbiol 69:3359–3367

    Article  PubMed  CAS  Google Scholar 

  • Sexstone AJ, Parkin TB, Tiedje JM (1985) Temporal response of soil denitrification rates to rainfall and irrigation. Soil Sci Soc Am J 49:99–103

    Article  CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of the physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  Google Scholar 

  • Shelton DR, Karns JS, Higgins JA, Van Kessel JS, Perdue ML, Belt KT, Russel-Anelli J, Debroy C (2006) Impact of microbial diversity on rapid detection of enterohemorrhagic Escherichia coli in surface waters. FEMS Microbial Lett 261:95–101

    Article  CAS  Google Scholar 

  • Smith KA, Clayton H, Arah JRM, Christensen S, Ambus P, Fowler D, Hargreaves KJ, Skiba U, Harris GW, Wienhold FG, Klemedtsson L, Galle B (1994) Micrometeorological and chamber methods for measurement of nitrous oxide fluxes between soils and the atmosphere—overview and conclusions. J Geophys Res Atmos 99:16541–16548

    Article  CAS  Google Scholar 

  • Standing DB, Killham K (2006) Soil as a microbial habitat. In: Van Elsas D, Jansson J, Trevors JT (eds) Modern soil microbiology, 2nd edn. Taylor & Francis, New York, pp 1–22

    Google Scholar 

  • Standing D, Meharg AA, Killham K (2003) A tripartite microbial reporter gene system for real-time assays of soil nutrient status. FEMS Microbiol Ecol 220:35–59

    Article  CAS  Google Scholar 

  • Standing DB, Rangel Castro JI, Prosser JI, Meharg AA, Killham K (2005) Rhizosphere carbon flow - a driver of soil biodiversity? In: Bardgett R, Hopkins D, Usher M (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 154–167

    Google Scholar 

  • Weitz HJ, Campbell CD, Killham K (2002) Development of a novel, bioluminescence-based, fungal bioassay for toxicity testing. Environ Microbiol 4:422–429

    Article  PubMed  CAS  Google Scholar 

  • Wrage N, van Groeningen JW, Oenema O, Baggs EM (2005) Distinguishing between soil sources of N2O using a new 15N- and 18O-enrichment method. Rapid Commun Mass Spectrom 19:3298–3306

    Article  PubMed  CAS  Google Scholar 

  • Yeomans CV, Porteous F, Paterson E, Meharg AA, Killham K (1999) Assessment of lux-marked Pseudomonas fluorescens for reporting on organic carbon compounds. FEMS Microbiol Lett 179:79–83

    Article  Google Scholar 

  • Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Title of the article. Appl Environ Microbiol 66:4361–4365

    Article  PubMed  CAS  Google Scholar 

  • Young LY, Cerniglia C (1995) Microbial degradation and transformation of toxic organic chemicals. Wiley–Liss, New York

    Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self-organization in the soil-microbe complex. Science 304:1634–1637

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. John Townend for his development of rhizobacterial individual-based models, BBSRC grant no. BB/C512853/1 for the ongoing work with antibiotic producing rhizobacteria and Dr. Graeme Paton for his contribution to the tox-map development, as well as NERC for funding E. Baggs on an Advanced Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Standing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Standing, D., Baggs, E.M., Wattenbach, M. et al. Meeting the challenge of scaling up processes in the plant–soil–microbe system. Biol Fertil Soils 44, 245–257 (2007). https://doi.org/10.1007/s00374-007-0249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-007-0249-z

Keywords

Navigation