Skip to main content
Log in

Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Seventy-six rhizobial isolates belonging to four different genera were obtained from the root nodules of several legumes (Vicia sativa, Vicia faba, Medicago sativa, Melilotus sp., Glycine max and Lotus corniculatus). The action of five commonly used herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate (GF), dicamba, atrazine and metsulfuron-methyl] on the growth of rhizobial strains was assessed. Subsequently, GF and 2,4-D were tested in a minimum broth as C and energy sources for 20 tolerant strains. The ability of these strains to metabolize different carbon sources was studied in order to detect further differences among them. Tolerance of the bacteria to agrochemicals varied; 2,4-D and GF in solid medium inhibited and diminished growth, respectively, in slow-growing rhizobial strains. Among slow-growing strains we detected Bradyrhizobium sp. SJ140 that grew well in broth + GF as the sole C and energy source. No strain was found which could use 2,4-D as sole C source. The 20 strains studied exhibited different patterns of C sources utilization. Cluster analysis revealed three groups, corresponding to four genera of rhizobia: Rhizobium (group I), Sinorhizobium (group II) and Mesorhizobium–Bradyrhizobium (group III). On the basis of the results obtained on responses to herbicides and C sources utilization by the isolates investigated, it was possible to differentiate them at the level of strains. These results evidenced a considerable diversity in rhizobial populations that had not been previously described for Argentinean soils, and suggested a physiological potential to use natural and xenobiotic C sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander M (1980) Introducción a la microbiología del suelo. AGT Editor, México

    Google Scholar 

  • Bergersen FJ (1961) The growth of Rhizobium in synthetic media. Aust J Biol Sci 14:349–360

    CAS  Google Scholar 

  • Bertonatti C, Corcuera J (2000) Situación ambiental Argentina 2000. Fundación Vida Silvestre Argentina, Buenos Aires

    Google Scholar 

  • Bouquard C, Ouzzani J, Promé J-C, Michael-Briand Y, Plésiat P (1997) Dechlorination of atrazine by a Rhizobium sp. isolate. Appl Environ Microbiol 63:862–866

    PubMed  CAS  Google Scholar 

  • Burkart A (1952) Loteas. In: Las leguminosas argentinas. Acme, Buenos Aires, pp 280–283

    Google Scholar 

  • Chakrabarti S, Lee MS, Gibson AH (1981) Diversity in the nutritional requirements of strains of various Rhizobium species. Soil Biol Biochem 13:349–354

    Article  CAS  Google Scholar 

  • Dinelli G, Vicari A, Acinelli C (1998) Degradation and side effects of three sulfonylurea herbicides in soil. J Environ Qual 27:1459–1464

    CAS  Google Scholar 

  • Eberbach PL, Douglas LA (1983) Persistence of glyphosate in a sandy loam. Soil Biol Biochem 15:485–487

    Article  CAS  Google Scholar 

  • Faizah AW, Broughton WJ, John CK (1980) Rhizobia in tropical legumes—XI. Survival in the seed environment. Soil Biol Biochem 12:219–227

    Article  CAS  Google Scholar 

  • Fulchieri MM, Estrella MJ, Iglesias AA (1999) Characterization of Rhizobium loti strains native from the Salado River Basin. Studies on symbiotic potential. In: The 2nd International Lotus Symposium, St. Louis, MO, USA in conjunction with the XIV International Botanical Congress. http://www.psu.missouri.edu/lnl/v30/ Fulchieri.htm

  • Hintze J (2001) NCSS and PASS number cruncher statistical systems. Kaysville, UT. http://www.ncss.com/download.html

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey's manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Jordan DC (1984) Gram-negative aerobic rods and cocci. Family III Rhizobiaceae Conn 1938. In: Krieg N, Holt JG (eds) Bergey's manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 234–244

    Google Scholar 

  • Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63:2266–2272

    PubMed  CAS  Google Scholar 

  • Kennedy AC (1994) Carbon utilization and fatty acid profiles for characterization of bacteria. In: Weaver RW, Angle S, Bottomley P (eds) Methods of soil analysis, Part 2. Microbiological and biochemical properties. Soil Sciences Society of America, Madison, pp 543–556

    Google Scholar 

  • Kennedy AC, Smith KD (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Liu C-M, McLean PA, Sookdeo CC, Cannon FC (1991) Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol 57:1799–1804

    PubMed  CAS  Google Scholar 

  • Martínez-Romero E, Caballero-Mellado J (1996) Rhizobium phylogenies and bacterial genetic diversity. Crit Rev Plant Sci 15:113–140

    Article  Google Scholar 

  • McInroy SG, Campbell CD, Haukka KE, Odee DW, Sprent JI, Wang W-J, Young JPW, Sutherland JM (1999) Characterisation of rhizobia from African acacias and other tropical woody legumes using Biolog and partial 16S rRNA sequencing. FEMS Microbiol Lett 170:111–117

    Article  PubMed  CAS  Google Scholar 

  • Paffetti D, Scotti C, Gnocchi S, Fancelli S, Bazzicalupo M (1996) Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Appl Environ Microbiol 62:2279–2285

    PubMed  CAS  Google Scholar 

  • Palmer KM, Young JPW (2000) Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl Environ Microbiol 66:2445–2450

    Article  PubMed  CAS  Google Scholar 

  • Pipke R, Amrhein N (1988) Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl Environ Microbiol 54:2868–2870

    PubMed  CAS  Google Scholar 

  • Sadowsky MJ, Graham PH (1998) Soil biology of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp 155–172

    Google Scholar 

  • Saito A, Mitsui H, Hattori R, Minamisawa K, Hattori T (1998) Slow-growing and oligotrophic soil bacteria phylogenetically close to Bradyrhizobium japonicum. FEMS Microbiol Ecol 25:277–286

    Article  CAS  Google Scholar 

  • Swelim DM, Hashem FM, Kuykendall LD, Hegazi NI, Abdel-Wahab SM (1997) Host specificity and phenotypic diversity of Rhizobium strains nodulating Leucaena, Acacia, and Sesbania in Egypt. Biol Fertil Soils 25:224–232

    Article  Google Scholar 

  • Ulrich A, Zaspel I (2000) Phylogenetic diversity of rhizobial strains nodulating Robinia pseudoacacia L. Microbiology 146:2997–3005

    PubMed  CAS  Google Scholar 

  • Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martínez-Molina E (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Bacteriol 51:1011–1021

    Google Scholar 

  • Vincent JM (1970) A manual for the study of the root-nodule bacteria. I.B.P. Handbook No. 15. Blackwell, Oxford

    Google Scholar 

  • Wagner SC, Skipper HD, Hartel PG (1995) Medium to study carbon utilization by Bradyrhizobium strains. Can J Microbiol 41:633–636

    Article  CAS  Google Scholar 

  • Werner D (1992) Symbiosis of plant and microbes. Chapman and Hall, London

    Google Scholar 

  • Zablotowicz RM, Reddy KN (2004) Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview. J Environ Qual 33:825–831

    Article  PubMed  CAS  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Norman Peinemann for giving permission to use laboratory equipment, and the Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur (SGCyT-UNS) for the scholarship for post-graduate study granted to M.C. Zabaloy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Celina Zabaloy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabaloy, M.C., Gómez, M.A. Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biol Fertil Soils 42, 83–88 (2005). https://doi.org/10.1007/s00374-005-0012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-005-0012-2

Keywords

Navigation