Biology and Fertility of Soils

, Volume 40, Issue 4, pp 222–229 | Cite as

Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment

  • Johann G. Zaller
  • Ulrich Köpke
Original Paper


We studied the effects of applications of traditionally composted farmyard manure (FYM) and two types of biodynamically composted FYM over 9 years on soil chemical properties, microbial biomass and respiration, dehydrogenase and saccharase activities, decomposition rates and root production under grass-clover, activity and biomass of earthworms under wheat, and yields in a grass-clover, potatoes, winter wheat, field beans, spring wheat, winter rye crop rotation. The experiment was conducted near Bonn, on a Fluvisol using a randomised complete block design (n=6). Our results showed that plots which received either prepared or non-prepared FYM (30 Mg ha−1 year−1) had significantly increased soil pH, P and K concentrations, microbial biomass, dehydrogenase activity, decomposition (cotton strips), earthworm cast production and altered earthworm community composition than plots without FYM application. Application of FYM did not affect the soil C/N ratio, root length density, saccharase activity, microbial basal respiration, metabolic quotient and crop yields. The biodynamic preparation of FYM with fermented residues of six plant species (6 g Mg−1 FYM) significantly decreased soil microbial basal respiration and metabolic quotient compared to non-prepared FYM or FYM prepared with only Achillea. The biodynamic preparation did not affect soil microbial biomass, dehydrogenase activity and decomposition during 62 days. However, after 100 days, decomposition was significantly faster in plots which received completely prepared FYM than in plots which received no FYM, FYM without preparations or FYM with the Achillea preparation. Furthermore, the application of completely prepared FYM led to significantly higher biomass and abundance of endogeic or anecic earthworms than in plots where non-prepared FYM was applied.


Cattle manure Organic farming Soil quality Soil ecology Organic fertiliser 



We are very grateful to Christian Dahn, Frank Täufer, Henning Riebeling and Johannes Siebigteroth for maintaining field plots throughout the years. Thanks to Gerd Welp and Marina Anissimova for providing their laboratory facilities for microbial analyses and their advice on this. Thanks also to Dieter Zedow, Kim Schieve, Thomas Gerhardt, Marina Piatto, Harriet Leese, Birgit Stöcker and Sonja Reinhardt for conducting soil laboratory analyses and helping with field sampling. The Institute of Biodynamic Agriculture, Darmstadt, Germany provided the compost preparations.


  1. Abele U (1978) Ertragssteigerung durch Flüssigmistbehandlung. Untersuchungen des Rotteverlaufs von Gülle bei verschiedener Behandlung und deren Wirkung auf Boden, Pflanzenertrag und Pflanzenqualität. KTBL-Schriftenr 224:1–134Google Scholar
  2. Alföldi T, Mäder P, Oberson A, Spiess E, Niggli U, Besson J-M (1993) DOK-Versuch: vergleichende Langzeit-Untersuchungen in den drei Anbausystemen biologisch-Dynamisch, Organisch-biologisch und Konventionell. III. Boden: Chemische Untersuchungen, 1. und 2. Fruchtfolgeperiode. Schweiz Landwirtsch Forsch 32:479–507Google Scholar
  3. Anderson JM, Domsch KH (1978) A physiological method for quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221CrossRefGoogle Scholar
  4. Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479CrossRefGoogle Scholar
  5. Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biol Biochem 22:251–255CrossRefGoogle Scholar
  6. Bouché MB (1977) Strategies lombriciennes. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems. Ecol Bull [Stockh] 25:122–133Google Scholar
  7. Carpenter-Boggs L, Kennedy A, Reganold J (2000a) Organic and biodynamic management: effects on soil biology. Soil Sci Soc Am J 64:1651–1659Google Scholar
  8. Carpenter-Boggs L, Reganold JP, Kennedy AC (2000b) Effects of biodynamic preparations on compost development. Biol Agric Hortic 17:313–328Google Scholar
  9. Drinkwater LE, Letourneau DK, Workneh F, van Bruggen AHC, Shennan C (1995) Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol Appl 5:1098–1112Google Scholar
  10. Droogers P, Bouma J (1996) Biodynamic versus conventional farming effects on soil structure expressed by simulated potential productivity. Soil Sci Soc Am J 60:1552–1558Google Scholar
  11. Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman & Hall, LondonGoogle Scholar
  12. Fließbach A, Mäder P (1997) Carbon source utilization by microbial communities in soils under organic and conventional farming practice. In: Insam H, Rangger A (eds) Microbial communities. Functional versus structural approaches. Springer, Berlin Heidelberg New York, pp 109–120Google Scholar
  13. Fließbach A, Mäder P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768CrossRefGoogle Scholar
  14. Fließbach A, Mäder P, Niggli U (2000) Mineralization and microbial assimilation of C-14-labeled straw in soils of organic and conventional agricultural systems. Soil Biol Biochem 32:1131–1139CrossRefGoogle Scholar
  15. Gunn A (1992) The use of mustard to estimate earthworm populations. Pedobiologia 36:65–67Google Scholar
  16. Hofmann ED, Hoffmann GG (1966) Die Bestimmung der biologischen Tätigkeit in Böden mit Enzymmethoden. Adv Enzyme Regul 28:365–390Google Scholar
  17. Insam H, Domsch Kh (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15:177–188Google Scholar
  18. Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to primary and secondary succession. Oecologia 79:174–178Google Scholar
  19. Insam H, Mitchell CC, Dormaar JF (1991) Relationship of soil microbial biomass and activity with fertilisation practice and crop yield of three ultisols. Soil Biol Biochem 23:459–464CrossRefGoogle Scholar
  20. Koepf HH (1989) The biodynamic farm. Anthroposophic, HudsonGoogle Scholar
  21. Koepf HH (1993) Research in biodynamic agriculture: methods and results. Bio-Dynamic Farming and Gardening Association, KimbertonGoogle Scholar
  22. Koepf HH, Pettersson BD, Schaumann W (1980) Biologisch-dynamische Landwirtschaft. Eine Einführung. Ulmer, StuttgartGoogle Scholar
  23. Lampkin N (1990) Organic farming. Farming Press, IpswichGoogle Scholar
  24. Mäder P, Pfiffner L, Jäggi W, Wiemken A, Niggli U, Besson J-M (1993) DOK-Versuch: Vergleichende Langzeituntersuchungen in den drei Anbausystemen biologisch-dynamisch, organisch-biologisch und konventionell. III. Boden: Mikrobiologische Untersuchungen. Schweiz Landwirtsch Forsch 32:509–545Google Scholar
  25. Mäder P, Fließbach A, Wiemken A, Niggli U (1995) Assessment of soil microbial status under long-term low input (biological) and high input (conventional) agriculture. In: Mäder P, Raupp J (eds) Effects of low and high external input agriculture on soil microbial biomass and activities in view of sustainable agriculture. Research Institute of Organic Agriculture and Institute for Biodynamic Research, Darmstadt, pp 24–38Google Scholar
  26. Mäder P, Pfiffner L, Fließbach A, von Lützow M, Munch JC (1996) Soil ecology—the impact of organic and conventional agriculture on soil biota and its significance for soil fertility. In: Oestergaard TV (ed) Fundamentals of organic agriculture, vol 1. Proceedings of the 11th IFOAM Scientific Conference, August 11–15, Copenhagen, pp 24–46Google Scholar
  27. Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697CrossRefPubMedGoogle Scholar
  28. Penfold CM, Miyan MS, Reeves TG, Grierson IT (1995) Biological farming for sustainable agricultural production. Aust J Exp Agric 35:849–856Google Scholar
  29. Pfiffner L, Mäder P (1997) Effects of biodynamic, organic and conventional production systems on earthworm populations. Entomol Res Org Agric 1997:3–10Google Scholar
  30. Pfiffner L, Mäder P, Besson J-M, Niggli U (1993) DOK-Versuch: vergleichende Langzeit-Untersuchungen in den drei Anbausystemen biologisch-Dynamisch, Organisch-biologisch und Konventionell. III. Boden: Untersuchungen über die Regenwurmpopulationen. Schweiz Landwirtsch Forsch 32:547–564Google Scholar
  31. Raupp J (1995) The long-term trial in Darmstadt: mineral fertilizer, composted manure and composted manure plus all biodynamic preparations. In: Raupp J (ed) Main effects of various organic and mineral fertilization on soil organic matter turnover and plant growth. Institute for Biodynamic Research, Darmstadt, pp 28–36Google Scholar
  32. Reganold JP (1988) Comparison of soil properties as influenced by organic and conventional farming systems. Am J Altern Agric 3:144–155Google Scholar
  33. Reganold JP, Palmer AS (1995) Significance of gravimetric versus volumetric measurements of soil quality under biodynamic, conventional, and continuous grass management. J Soil Water Conserv 50:298–305Google Scholar
  34. Reganold JP, Palmer AS, Lockhart JC, Macgregor AN (1993) Soil quality and financial performance of biodynamic and conventional farms in New Zealand. Science 260:344–349Google Scholar
  35. Riehm H (1948) Arbeitsvorschrift zur Bestimmung der Phosphorsäure und des Kaliums nach Lactatverfahren. Z Pflanzenernaehr Dueng Bodenkd 40:152–156Google Scholar
  36. Schaefer M (1992) Brohmer-Fauna von Deutschland: ein Bestimmungsbuch unserer heimischen Tierwelt, 18th edn. Quelle & Meyer, HeidelbergGoogle Scholar
  37. Scheu S (1987) The role of substrate feeding earthworms (Lumbricidae) for bioturbation in a beechwood soil. Oecologia 72:192–196Google Scholar
  38. Springett JA (1983) Effect of five species of earthworms on some soil properties. J Appl Ecol 20:865–872Google Scholar
  39. Steiner R (1924) Geisteswissenschaftliche Grundlagen zum Gedeihen der Landwirtschaft. Steiner, DornachGoogle Scholar
  40. Thalmann A (1968) Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–258Google Scholar
  41. Whalen JK, Chang C (2002) Macroaggregate characteristics in cultivated soils after 25 annual manure applications. Soil Sci Soc Am J 66:1637–1647Google Scholar
  42. Willson T, Paul E, Harwood R (2001) Biologically active soil organic matter fractions in sustainable cropping systems. Appl Soil Ecol 16:63–76CrossRefGoogle Scholar
  43. Wistinghausen von E (1984) Düngung und biologisch-dynamische Präparate. Lebendige Erde, DarmstadtGoogle Scholar
  44. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institute of Organic AgricultureUniversity of BonnBonnGermany

Personalised recommendations