Skip to main content

Advertisement

Log in

Effects of mycorrhizal inoculation of shrubs from Mediterranean ecosystems and composted residue application on transplant performance and mycorrhizal developments in a desertified soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract.

Arbuscular mycorrhizal inoculation and composted residue application are being assayed to aid restoration of desertified areas under Mediterranean climate. The particular objective of the present study was to assess the short-term (8 months) effects on the initial stages of plant performance and on mycorrhizal propagule release, key factors to decide further developments in the restoration process. Mycorrhizal inoculation, with Glomus intraradices, was practised during nursery production of representative shrub species from Mediterranean ecosystems and composted residues were added to soil before transplanting to a desertified area in southern Spain. Pistacia lentiscus, Rhamnus lycioides, Olea europaea subsp. sylvestris and Retama sphaerocarpa, key species from the natural succession in the target area, were the test plants. Mycorrhizal inoculation, and in some cases compost addition, improved the ability for nutrient acquisition by plants upon transplanting in the field. The number of "infective" mycorrhizal propagules was higher in soil around mycorrhiza-inoculated shrubs than that around the corresponding non-inoculated controls. The organic amendment significantly increased propagule production in the rhizosphere of mycorrhiza-inoculated plants. The number of mycorrhizal spores was relatively low in soil around transplants, being hardly affected by treatments. Only three distinguishable glomalean spore morphotypes were found, belonging to the species Glomus geosporum, G. contrictum and Scutellospora calospora, with very few unidentified spores, corroborating the low diversity in degraded ecosystems. An increased development of the extramatrical AM mycelium was found in soil around the roots of the four mycorrhiza-inoculated test plants, probably the main source of AM fungal propagules in the ecosystem at this stage of plant development. In conclusion, the tailored AM inoculation assayed was functioning under field conditions to enhance nutrient acquisition by the target indigenous shrubs and, in interaction with organic amendments, promoted mycorrhizal propagule production in soil, critical factors to benefit further stages of the revegetation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palenzuela, .J., Azcón-Aguilar, .C., Figueroa, .D. et al. Effects of mycorrhizal inoculation of shrubs from Mediterranean ecosystems and composted residue application on transplant performance and mycorrhizal developments in a desertified soil. Biol Fertil Soils 36, 170–175 (2002). https://doi.org/10.1007/s00374-002-0520-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-002-0520-2