Skip to main content
Log in

Nitrogen balance of nitrogen-15 applied as ammonium sulphate to irrigated potatoes in sandy textured soils

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract.

Farmers are applying very high amounts of N fertilizer (sometimes >900 kg N/ha), commonly (NH4)2SO4, to irrigated potato (Solanum tuberosum, L.) grown on sandy textured soils in the Cappadocia region of Turkey. To obtain information on potato yield, N uptake, N fertilizer residue in the soil and the portion of N fertilizer leached below 200 cm soil depth, nine field experiments were conducted at three different locations in 1992, 1993 and 1994. The N rates used in these experiments were 0, 200, 400, 600, 800 and 1,000 kg N/ha within a completely randomized block design with three replicates. N fertilizer was applied in two equal portions; one at planting and one just before the first irrigation. Although all yield data were used to find out the marketable tuber yield, the N rate response curve and the fate of applied fertilizer N was determined only for the 400 and 1,000 kg N/ha rates. Isotope microplots were established where 15N-labelled (NH4)2SO4 was applied at 5.0 atom % and 2.5 atom % excess enrichments for the 400 kg N/ha and 1,000 kg N/ha rates, respectively. At harvest, marketable and dry tuber yield was determined for all N rates. Dry tuber and leaf plus vine yields were determined for the isotope microplots and they were analysed for the % N and 15N atom % excess. The % N derived from fertilizer and N use efficiency (%NUE) were calculated for the plant samples. The 15N-labelled residue left in 0–200 cm soil was also determined. The amount of N fertilizer leached below 200 cm soil depth was also calculated. 15N-labelled NO3 and total NO3 of the groundwater from wells were determined at different dates. Our results show that the optimum marketable tuber yield was obtained with 600 kg N/ha. Tuber N uptake was increased slightly, while leaf plus vine N uptake increased considerably when the N rate was increased from 400 to 1,000 kg N/ha. The %NUE values decreased nearly by half and the amount of N fertilizer in the 0–200 cm soil layer increased more than 3 times when the N rate was increased from 400 to 1,000 kg N/ha. Nearly half of the applied fertilizer N (45.6%) at 400 kg N/ha and more than half of the applied fertilizer N (60.8%) at 1,000 kg N/ha was still in the 0–200 cm soil layer after harvest. Four times more N fertilizer was leached below 200 cm soil depth when 1,000 kg N/ha N was applied instead of 400 kg N/ha. Our results also indicate that there is a potential contamination of groundwater due to leaching of the applied N fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halitligil, .M., Akin, .A. & Ýlbeyi, .A. Nitrogen balance of nitrogen-15 applied as ammonium sulphate to irrigated potatoes in sandy textured soils. Biol Fertil Soils 35, 369–378 (2002). https://doi.org/10.1007/s00374-002-0482-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-002-0482-4

Navigation