Skip to main content
Log in

On 4-Sachs Optimal Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a graph with order n and adjacency matrix \({\textbf{A}}(G)\). The adjacency polynomial of G is defined as \(\phi (G;\lambda ) =\det (\lambda {\textbf{I}}-{\textbf{A}}(G))=\sum _{i=0}^n\mathbf {a_{\textit{i}}}(G)\lambda ^{n-i}\). Here, \({\textbf{a}}_i(G)\) is referred as the i-th adjacency coefficient of G. We use \({\mathfrak {G}}_{n,m}\) to denote the set of all connected graphs having n vertices and m edges. A graph \(G\in {\mathfrak {G}}_{n,m}\) is said to be 4-Sachs optimal in \({\mathfrak {G}}_{n,m}\) if

$$\begin{aligned} {\textbf{a}}_4(G)=\min \{{\textbf{a}}_4(H)|H\in {\mathfrak {G}}_{n,m}\}. \end{aligned}$$

The minimum 4-Sachs number in \({\mathfrak {G}}_{n,m}\) is denoted by \(\overline{{\textbf{a}}_4}({\mathfrak {G}}_{n,m})\), which is the value of \(\min \{{\textbf{a}}_4(H)|H\in {\mathfrak {G}}_{n,m}\}\). In this paper, we study the relationship between the value of \({\textbf{a}}_4(G)\) and the structural properties of G. Specially, we provide a structural characterization of 4-Sachs optimal graphs by showing that each 4-Sachs optimal graph in \({\mathfrak {G}}_{n,m}\) contains a connected difference graph as its spanning subgraph. Additionally, for \(n\ge 4\) and \(n-1\le m\le 2n-4\), we determine all 4-Sachs optimal graphs, along with their corresponding minimum 4-Sachs number \(\overline{{\textbf{a}}_4}({\mathfrak {G}}_{n,m})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data were used to support this study.

References

  1. Abrego, B.M., Fernćndez Merchant, S., Neubauer, M.G., Watkins, W.: Sum of squares of degrees in a graph. J. Inequal. Pure Appl. Math. 10(3), 64 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Andelić, M., da Fonseca, C.M., Simić, S.K., Tos̆ić, D.V.: On bounds for the index of double nested graphs. Linear Algebra Appl. 435(10), 193–210 (2011)

    Article  MathSciNet  Google Scholar 

  3. Ahlswede, R., Katona, G.O.H.: Graphs with maximal number of adjacent pairs of edges. Acta Math. Acad. Sci. Hung. 32, 97–120 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ashkenazi, Y.: \(C_3\) saturated graphs. Discrete Math. 297, 152–158 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bell, F.K., Cvetković, D., Rowlinson, P., Simić, S.K.: Graphs for which the least eigenvalue is minimal, II. Linear Algebra Appl. 429, 2168–2179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bollobás, B., Erdös, P.: On a Ramsey–Turán type problem. J. Combin. Theory B 21, 166–168 (1976)

    Article  MATH  Google Scholar 

  7. Cutler, J., Radcliff, A.J.: Extremal graphs for homomorphisms. J. Graph Theory 67(4), 261–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  9. Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory Of Graph Spectra. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  10. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    Book  MATH  Google Scholar 

  11. Gong, S.C., Zhang, L.P., Sun, S.W.: On bipartite graphs having minimal fourth adjacency coefficient. Graphs Combin. 38(3), 38–60 (2022)

    Article  Google Scholar 

  12. Hammer, P.L., Peled, U.N., Sun, X.R.: Difference graphs. Discrete Appl. Math. 28(1), 35–44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kászonyi, L., Tuza, Z.: Saturated graphs with minimal number of edges. J. Graph Theory 10, 203–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keough, L., Radcliffe, A.J.: Graphs with the fewest matchings. Combinatorica 36(6), 703–723 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Elsevier, London (1995)

    MATH  Google Scholar 

  16. Mowshowitz, A.: The characteristic polynomial of a graph. J. Combin. Theory B 12, 177–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebraic Discrete Methods 3, 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Supported by Zhejiang Provincial Natural Science Foundation of China (No. LY20A010005), and National Natural Science Foundation of China (No. 12271484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Cai Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by Zhejiang Provincial Natural Science Foundation of China (No. LY20A010005), and National Natural Science Foundation of China (No. 12271484).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, SC., Wang, JX. & Sun, SW. On 4-Sachs Optimal Graphs. Graphs and Combinatorics 39, 74 (2023). https://doi.org/10.1007/s00373-023-02663-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02663-7

Keywords

Mathematics Subject Classification

Navigation