Skip to main content
Log in

2-Nested Matrices: Towards Understanding the Structure of Circle Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A (0, 1)-matrix has the consecutive-ones property (C1P) if its columns can be permuted to make the 1’s in each row appear consecutively. This property was characterized in terms of forbidden submatrices by Tucker in 1972. Several graph classes were characterized by means of this property, including interval graphs and strongly chordal digraphs. In this work, we define and characterize 2-nested matrices, which are (0, 1)-matrices with a variant of the C1P and for which there is also a certain assignment of one of two colors to each block of consecutive 1’s in each row. The characterization of 2-nested matrices in the present work is of key importance to characterize split graphs that are also circle by minimal forbidden induced subgraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Annexstein, F. S., Swaminathan, R. P.: On testing consecutive-ones property in parallel. In Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’95, pages 234–243, New York, NY, USA, 1995. Association for Computing Machinery

  2. Basu, A., Das, S., Ghosh, S., Sen, M.: Circular-arc bigraphs and its subclasses. J. Graph Theory 73(4), 361–376 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bonomo, F., Durán, G., Grippo, L., Safe, M.: Partial characterizations of circle graphs. Discrete Appl. Math. 159(16), 1699–1706 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bonomo-Braberman, F., Durán, G., Pardal, N., Safe, M. D.: Forbidden induced subgraph characterization of circle graphs within split graphs. Discrete Appl. Math., In press., 2021. https://doi.org/10.1016/j.dam.2020.12.021

  5. Bouchet, A.: Reducing prime graphs and recognizing circle graphs. Combinatorica 7(3), 243–254 (1987)

    Article  MathSciNet  Google Scholar 

  6. Bouchet, A.: Circle graphs obstructions. J. Comb. Theory, Ser. B, 60(1):107–144, (1994)

  7. Brijder, R., Traldi, L.: A characterization of circle graphs in terms of multimatroid representations. Electron. J. Comb., 27(1):P1.25, (2020)

  8. Brijder, R., Traldi, L.: A characterization of circle graphs in terms of total unimodularity. Eur. J. Comb. 102, 103455 (2022)

    Article  MathSciNet  Google Scholar 

  9. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)

    Article  MathSciNet  Google Scholar 

  10. Durán, G., Grippo, L., Safe, M.: Structural results on circular-arc graphs and circle graphs: a survey and the main open problems. Discrete Appl. Math. 164, 427–443 (2014)

    Article  MathSciNet  Google Scholar 

  11. Even, S., Itai, A.: Queues, stacks, and graphs. In Theory of machines and computations (Proc. Internat. Sympos., Technion, Haifa, 1971), pages 71–86, (1971)

  12. Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs. J. Assoc. Comput. Mach. 19, 400–410 (1972)

    Article  MathSciNet  Google Scholar 

  13. Feder, T., Hell, P., Huang, J., Rafiey, A.: Interval graphs, adjusted interval digraphs, and reflexive list homomorphisms. Discrete Appl. Math. 160(6), 697–707 (2012)

    Article  MathSciNet  Google Scholar 

  14. Fishburn, P. C.: Interval orders and interval graphs. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, Ltd., Chichester, 1985. A study of partially ordered sets, A Wiley-Interscience Publication

  15. Földes, S., Hammer, P. L.: Split graphs. Technical Report Technical Report CORR 76-3, University of Waterloo, Waterloo, Canada, (1976)

  16. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)

    Article  MathSciNet  Google Scholar 

  17. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18, 25–66 (1967)

    Article  MathSciNet  Google Scholar 

  18. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth. 1(2), 216–227 (1980)

    Article  MathSciNet  Google Scholar 

  19. Gavril, F.: Algorithms on circular-arc graphs. Networks 4, 357–369 (1974)

    Article  MathSciNet  Google Scholar 

  20. Geelen, J., Oum, S.: Circle graph obstructions under pivoting. J. Graph Theory 61(1), 1–11 (2009)

    Article  MathSciNet  Google Scholar 

  21. Gioan, E., Paul, C., Tedder, M., Corneil, D.: Practical and efficient circle graph recognition. Algorithmica 69(4), 759–788 (2014)

    Article  MathSciNet  Google Scholar 

  22. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, volume 57 of Annals of Discrete Mathematics. Elsevier Science B.V., Amsterdam, second edition, 2004. With a foreword by Claude Berge

  23. Hsu, W.-L.: On physical mapping algorithms: an error-tolerant test for the consecutive ones property. In Computing and combinatorics (Shanghai, 1997), volume 1276 of Lecture Notes in Comput. Sci., pages 242–250. Springer, Berlin, (1997)

  24. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Normal Helly circular-arc graphs and its subclasses. Discrete Appl. Math. 161(7–8), 1037–1059 (2013)

    Article  MathSciNet  Google Scholar 

  25. Lipski, W.: Generalizations of the consecutive ones property and related np-complete problems. Fund. Inform. 6(1), 53–69 (1983)

    MathSciNet  MATH  Google Scholar 

  26. McConnell, R.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)

    Article  MathSciNet  Google Scholar 

  27. Mertzios, G.B.: A matrix characterization of interval and proper interval graphs. Appl. Math. Lett. 21(4), 332–337 (2008)

    Article  MathSciNet  Google Scholar 

  28. Naji, W.: Reconnaissance des graphes de cordes. Discret. Math. 54, 329–337 (1985)

    Article  MathSciNet  Google Scholar 

  29. Pardal, N.: Structural characterization of some problems on circle and interval graphs. PhD thesis, Universidad de Buenos Aires - Université Sorbonne Paris-Nord, 2020. arXiv:2006.00099

  30. Pardal, N., Durán, G.A., Grippo, L.N., Safe, M.D.: On nested and 2-nested graphs: two subclasses of graphs between threshold and split graphs. Mat. Contemp. 46, 119–128 (2018)

    MathSciNet  Google Scholar 

  31. Roberts, F.S.: On the compatibility between a graph and a simple order. J. Combinatorial Theory Ser. B 11, 28–38 (1971)

    Article  MathSciNet  Google Scholar 

  32. Safe, M.D.: Characterization and linear-time detection of minimal obstructions to concave-round graphs and the circular-ones property. J. Graph Theory 93(2), 268–298 (2020)

    Article  MathSciNet  Google Scholar 

  33. Safe, M.D.: Circularly compatible ones, \(D\)-circularity, and proper circular-arc bigraphs. SIAM J. Discrete Math. 35(2), 707–751 (2021)

    Article  MathSciNet  Google Scholar 

  34. Sen, M., Das, S., Roy, A.B., West, D.B.: Interval digraphs: an analogue of interval graphs. J. Graph Theory 13(2), 189–202 (1989)

    Article  MathSciNet  Google Scholar 

  35. Sen, M., Das, S., West, D.B.: Circular-arc digraphs: a characterization. J. Graph Theory 13(5), 581–592 (1989)

    Article  MathSciNet  Google Scholar 

  36. Sen, M., Sanyal, B.K.: Indifference digraphs: a generalization of indifference graphs and semiorders. SIAM J. Discrete Math. 7(2), 157–165 (1994)

    Article  MathSciNet  Google Scholar 

  37. Traldi, L.: Splitting cubic circle graphs. Discuss. Math. Graph Theory 36(3), 723–741 (2016)

    Article  MathSciNet  Google Scholar 

  38. Tucker, A.: Matrix characterizations of circular-arc graphs. Pacific J. Math. 39, 535–545 (1971)

    Article  MathSciNet  Google Scholar 

  39. Tucker, A.: A structure theorem for the consecutive \(1\)’s property. J. Combinatorial Theory Ser. B 12, 153–162 (1972)

    Article  MathSciNet  Google Scholar 

  40. Tucker, A.C.: Two characterizations of proper circular-arc graphs. PhD thesis, Stanford University, (1969)

Download references

Acknowledgements

We would like to thank Luciano Grippo for his engagement during the early stages of this work.

Funding

This work was partially supported by ANPCyT PICT-2015-2218, UBACyT Grants 20020170100495BA and 20020160100095BA, Programa Regional MATHAMSUD MATH190013. Guillermo Durán partially supported by ISCI CONICYT PIA FB0816; ICM P-05-004-F (Chile). Nina Pardal partially supported by a CONICET doctoral scholarship. Martín D. Safe partially supported by Universidad Nacional del Sur Grants PGI 24/L103 and PGI 24/L115, and ANPCyT PICT-2017-1315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Pardal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán, G., Pardal, N. & Safe, M.D. 2-Nested Matrices: Towards Understanding the Structure of Circle Graphs. Graphs and Combinatorics 38, 111 (2022). https://doi.org/10.1007/s00373-022-02510-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02510-1

Keywords

Mathematics Subject Classification

Navigation