Skip to main content
Log in

Triangle-Free Subgraphs of Hypergraphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we consider an analog of the well-studied extremal problem for triangle-free subgraphs of graphs for uniform hypergraphs. A loose triangle is a hypergraph T consisting of three edges ef and g such that \(|e \cap f| = |f \cap g| = |g \cap e| = 1\) and \(e \cap f \cap g = \emptyset \). We prove that if H is an n-vertex r-uniform hypergraph with maximum degree \(\triangle \), then as \(\triangle \rightarrow \infty \), the number of edges in a densest T-free subhypergraph of H is at least

$$\begin{aligned} \frac{e(H)}{\triangle ^{\frac{r-2}{r-1} + o(1)}}. \end{aligned}$$

For \(r = 3\), this is tight up to the o (1) term in the exponent. We also show that if H is a random n-vertex triple system with edge-probability p such that \(pn^3\rightarrow \infty \) as \(n\rightarrow \infty \), then with high probability as \(n \rightarrow \infty \), the number of edges in a densest T-free subhypergraph is

$$\begin{aligned} {{\mathrm{min}}}\left\{ (1-o(1))p\left( {\begin{array}{c}n\\ 3\end{array}}\right) ,p^{\frac{1}{3}}n^{2-o(1)}\right\} . \end{aligned}$$

We use the method of containers together with probabilistic methods and a connection to the extremal problem for arithmetic progressions of length three due to Ruzsa and Szemerédi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method, pp. 97–100. Wiley, New York (2016)

    MATH  Google Scholar 

  2. Balogh, J., Bohman, T., Mubayi, D.: Erdős–Ko–Rado in random hypergraphs. Combin. Probab. Comput. 18(5), 629–646 (2009)

    Article  MathSciNet  Google Scholar 

  3. Balogh, J., Morris, R., Samotij, W.: The method of hypergraph containers. In: Proceedings of the International Congress of Mathematicians-Rio de Janeiro, vol. 3, pp. 3045–3078 (2018)

  4. Balogh, J., Narayanan, B., Skokan, J.: The number of hypergraphs without linear cycles. J. Combin. Theory Ser. B 134, 309–321 (2019)

    Article  MathSciNet  Google Scholar 

  5. Balogh, J., Samotij, W.: The number of \(K_{s, t}\)-free graphs. J. Lond. Math. Soc. (2) 83(2), 368–388 (2011)

    Article  MathSciNet  Google Scholar 

  6. Behrend, F.: On sequences of numbers not divisible one by another. J. Lond. Math. Soc. 1(1), 42–44 (1935)

    Article  MathSciNet  Google Scholar 

  7. Conlon, D.: An extremal theorem in the hypercube. Electron. J. Combin. 17, R111 (2010)

    Article  MathSciNet  Google Scholar 

  8. Conlon, D., Gowers, W.T.: Combinatorial theorems in sparse random sets. Ann. Math. 184, 367–454 (2016)

    Article  MathSciNet  Google Scholar 

  9. DeMarco, B., Hamm, A., Kahn, J.: On the triangle space of a random graph. J. Combin. 4. https://doi.org/10.4310/JOC.2013.v4.n2.a4 (2012)

  10. DeMarco, B., Kahn, J.: Mantel’s Theorem for random graphs. Random Struct. Algorithms 47. https://doi.org/10.1002/rsa.20535 (2014)

  11. Erdős, P.: On the combinatorial problems which I would most like to see solved. Combinatorica 1(1), 25–42 (1981)

    Article  MathSciNet  Google Scholar 

  12. Erdős, P., Frankl, P., Rödl, V.: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin. 2, 113–121 (1986)

    Article  MathSciNet  Google Scholar 

  13. Erdős, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxf. Second Ser. 12, 313–320 (1961)

    Article  MathSciNet  Google Scholar 

  14. Foucaud, F., Krivelevich, M., Perarnau, G.: Large subgraphs without short cycles. SIAM J. Discrete Math. 29, 65–78 (2015)

    Article  MathSciNet  Google Scholar 

  15. Frankl, P., Füredi, Z.: Exact solution of some Turán-type problems. J. Combin. Theory Ser. A 45(2), 226–262 (1987)

    Article  MathSciNet  Google Scholar 

  16. Friedgut, E., Rödl, V., Schacht, M.: Ramsey properties of random discrete structures. Random Struct. Algorithms 37(4), 407–436 (2010)

    Article  MathSciNet  Google Scholar 

  17. Füredi, Z., Simonovits, M.: The History of Gegenerate (Bipartite) Extremal Graph Problems, Erdős Centennial, pp. 169–264. Springer, Berlin (2013)

    MATH  Google Scholar 

  18. Glock, S., Kühn, D., Lo, A., Osthus, D.: The existence of designs via iterative absorption. arXiv preprint arXiv:1611.06827 (2016)

  19. Keevash, P.: The existence of designs. arXiv preprint arXiv:1401.3665 (2014)

  20. Kohayakawa, Y., Kreuter, B., Steger, A.: An extremal problem for random graphs and the number of graphs with large even-girth. Combinatorica 18(1), 101–120 (1998)

    Article  MathSciNet  Google Scholar 

  21. Kohayakawa, Y., Łuczak, T., Rödl, V.: On \(K_4\)-free subgraphs of random graphs. Combinatorica 17(2), 173–213 (1997)

    Article  MathSciNet  Google Scholar 

  22. Mantel, W.: Problem 28 (Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff). Wiskundige Opgaven 10, 60–61 (1907)

  23. Morris, R., Saxton, D.: The number of \(C_{2l}\)-free graphs. Adv. Math. 298, 534–580 (2016)

    Article  MathSciNet  Google Scholar 

  24. Roth, K.: On certain sets of integers. J. Lond. Math. Soc. 28, 104–109 (1953)

    Article  MathSciNet  Google Scholar 

  25. Rödl, V., Thoma, L.: Asymptotic packing and the random greedy algorithm. Random Struct. Algorithms 8(3), 161–177 (1996)

    Article  MathSciNet  Google Scholar 

  26. Ruzsa, I.Z., Szemerédi, E.: Triple systems with no six points carrying three triangles. Combinatorics (Keszthely, 1976). Coll. Math. Soc. J. Bolyai 18, 939–945 (1978)

    Google Scholar 

  27. Saxton, D., Thomason, A.: Hypergraph containers. Invent. Math. 201(3), 925–992 (2015)

    Article  MathSciNet  Google Scholar 

  28. Schacht, M.: Extremal results for random discrete structures. Ann. Math. 184(2), 333–365 (2016)

    Article  MathSciNet  Google Scholar 

  29. Turán, P.: On an extremal problem in graph theory. Matematikai és Fizikai Lapok 48, 436–452 (1941)

    MathSciNet  Google Scholar 

Download references

Funding

This research is partially supported by the NSF Graduate Research Fellowship DGE-1650112; and partially supported by NSF FRG award DMS-1952786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxi Nie.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1650112. Research partially supported by NSF FRG award DMS-1952786.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, J., Spiro, S. & Verstraëte, J. Triangle-Free Subgraphs of Hypergraphs. Graphs and Combinatorics 37, 2555–2570 (2021). https://doi.org/10.1007/s00373-021-02388-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-021-02388-5

Keywords

Navigation