Closure and Spanning Trees with Bounded Total Excess


Let \(\alpha \ge 0\) and \(k \ge 2\) be integers. For a graph G, the total k-excess of G is defined as \(\text{ te }(G;k)=\sum _{v \in V(G)}\max \{d_G(v)-k,0\}\). In this paper, we propose a new closure concept for a spanning tree with bounded total k-excess. We prove that: Let G be a connected graph, and let u and v be two non-adjacent vertices of G. If G satisfies one of the following conditions, then G has a spanning tree T such that \(\text{ te }(T;k) \le \alpha\) if and only if \(G+uv\) has a spanning tree \(T'\) such that \(\text{ te }(T';k) \le \alpha\):

  1. (i)

    \(\max \{ \sum _{x \in X} d_G(x): X \text{ is } \text{ a } \text{ subset } \text{ of } S \text{ with } |X|=k \} \ge |G|-1 \text{ for } \text{ every } \text{ independent } \text{ set } S \text{ in } G \text{ of } \text{ order } k+1 \text{ such } \text{ that } \{ u,v \} \subseteq S\); or

  2. (ii)

    \(\max \{ \sum _{x \in X} d_G(x): X \text{ is } \text{ a } \text{ subset } \text{ of } S \text{ with } |X|=k \} \ge |G|-\alpha -1 \text{ for } \text{ every } \text{ independent } \text{ set } S \text{ in } G \text{ of } \text{ order } k+\alpha +1 \text{ such } \text{ that } S \cap \{ u,v \} \ne \emptyset .\)

We also show examples to show that these conditions are sharp.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    We can generalize \(G_1\) by replacing each vertex in \(V_1\) with a complete graph.


  1. 1.

    Aung, M., Kyaw, A.: Maximum trees with bounded maximum degree in a graph. Graphs Combin. 14, 209–221 (1998)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Broersma, H.J., Tuinstra, H.: Independence trees and hamilton cycles. J. Graph Theory 29, 227–237 (1998)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Broersma, H.J., Ryjáček, Z., Schiermeyer, I.: Closure concepts: a survey. Graphs Combin. 16, 17–48 (2000)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Enomoto, H., Ohnishi, Y., Ota, K.: Spanning trees with bounded total excess. Ars Combin. 102, 289–295 (2011)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Fujisawa, J., Matsumura, H., Yamashita, T.: Degree bounded spanning trees. Graphs Combin. 26, 695–720 (2010)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Matsubara, R., Tsugaki, M., Yamashita, T.: Closure and Spanning \(k\)-trees. Graphs Combin. 30, 957–962 (2014)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Ohnishi, Y., Ota, K.: A note on total excess of spanning trees. AKCE Int. J. Graphs Combin. 8, 97–103 (2011)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Ore, O.: Note on Hamilton circuits. Amer. Math. Mon. 67, 55 (1960)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Ozeki, K.: A toughness condition for a spanning tree with bounded total excesses. Graphs Combin. 31(5), 1679–1688 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Win, S.: Existenz von gerüsten mit vorgeschiebenem maximalgrad in graphen. Abh. Math. Seminar Univ. Hamburg 43, 263–267 (1975)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank Professor Hikoe Enomoto, Professor Haruhide Matsuda and the anonymous referees for their valuable comments and suggestions. This work was supported by JSPS KAKENHI Grant number JP20J15332 (to S.M.), JP20K14353 (to T.Y).

Author information



Corresponding author

Correspondence to Shun-ichi Maezawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maezawa, Si., Tsugaki, M. & Yashima, T. Closure and Spanning Trees with Bounded Total Excess. Graphs and Combinatorics (2021).

Download citation


  • Spanning tree
  • k-tree
  • k-ended tree
  • Total excess
  • Degree sum
  • Closure

Mathematics Subject Classification

  • 05C05
  • 05C50