Skip to main content
Log in

The Minimum Number of Edges in 4-Critical Digraphs of Given Order

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The dichromatic number \(\chi (D)\) of a digraph D, introduced by Neumann-Lara in the 1980s, is the least integer k for which D has a coloring with k colors such that each vertex receives a color and no directed cycle of D is monochromatic. The digraphs considered here are finite and may have antiparalell arcs, but no parallel arcs. A digraph D is k-critical if each proper subdigraph \(D'\) of D satisfies \(\chi (D')<\chi (D)=k\). For integers k and n, let \(d_k(n)\) denote the minimum number of arcs possible in a k-critical digraph of order n. It is easy to show that \(d_2(n)=n\) for all \(n\ge 2\), and \(d_3(n)\ge 2n\) for all possible n, where equality holds if and only if n is odd and \(n\ge 3\). As a main result we prove that \(d_4(n)\ge \lceil (10n-4)/3\rceil\) for all \(n\ge 4\) and \(n\not =5\) where equality holds if \(n \equiv 1 \, \mathrm {(mod} \; 3 \mathrm {)}\) or \(n \equiv 2 \, \mathrm {(mod} \; 3 \mathrm {)}\). As a consequence, we obtain that for each surface \(\mathbf{S}\) the number of 4-critical oriented graphs that can be embedded on \(\mathbf{S}\) is finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bang-Jensen, J., Bellitto, T., Schweser, T., Stiebitz, M.: A Hajós-like theorem for digraphs. submitted to Electronic J. Combin. arXiv:1908.04096v1 [math.CO] (2019)

  2. Bokal, D., Fijavž, G., Juvan, M., Kayll, P.M., Mohar, B.: The circular chromatic number of a digraph. J. Gr. Theory 46, 227–240 (2004)

    Article  MathSciNet  Google Scholar 

  3. Brooks, R.L.: On colouring the nodes of a network. Proc. Camb. Philos. Soc. Math. Phys. Sci. 37, 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  4. Dirac, G.A.: A property of 4-chromatic graphs and some remarks on critical graphs. J. Lond. Math. Soc. 27, 85–92 (1952)

    Article  MathSciNet  Google Scholar 

  5. Dirac, G.A.: The structure of \(k\)-chromatic graphs. Fund. Math. 40, 42–55 (1953)

    Article  MathSciNet  Google Scholar 

  6. Dirac, G.A.: A theorem of R. L. Brooks and a conjecture of H. Hadwiger. Proc. Lond. Math. Soc. 7, 161–195 (1957)

    Article  MathSciNet  Google Scholar 

  7. Dirac, G.A.: The number of edges in critical graphs. J. Reine Angew. Math. 268(269), 150–164 (1974)

    MathSciNet  MATH  Google Scholar 

  8. Erdős, P.: Problems and results in number theory and graphs theory. Congr. Numer. XXVII, 3–21 (1979)

    Google Scholar 

  9. Erdős, P., Neumann-Lara, V.: On the dichromatic number of a digraph. Technical Report (1982)

  10. Gallai, T.: Kritische Graphen I. Publ. Math. Inst. Hungar. Acad. Sci. 8, 165–192 (1963)

    MathSciNet  MATH  Google Scholar 

  11. Gallai, T.: Kritische Graphen II. Publ. Math. Inst. Hungar. Acad. Sci. 8, 373–395 (1963)

    MathSciNet  MATH  Google Scholar 

  12. Golowich, N.: The \(m\)-degenerate chromatic number of a digraph. Discrete Math. 339, 1734–1743 (2016)

    Article  MathSciNet  Google Scholar 

  13. Harutyunyan, A., Mohar, B.: Strengthened Brooks theorem for digraphs of girth three. Electron. J. Comb. 18, P195 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Kostochka, A.V.: Color-critical graphs and hypergraphs with few edges: a survey. More Sets Gr. Numbers Bolyai Soc. Math. Stud. 15, 175–197 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kostochka, A.V., Yancey, M.: Ore’s conjecture on color-critical graphs is almost true. J. Comb. Theory Ser. B 109, 73–101 (2014)

    Article  MathSciNet  Google Scholar 

  16. Kostochka, A.V., Yancey, M.: Ore’s conjecture for \(k=4\) and Grötzsch theorem. Combinatorica 34, 323–329 (2014)

    Article  MathSciNet  Google Scholar 

  17. Li, Z., Mohar, B.: Planar digraphs of digirth four are \(2\)-colorabble. SIAM J. Discrete Math. 31, 2201–2205 (2016)

    Article  Google Scholar 

  18. Mohar, B.: Eigenvalues and colorings of digraphs. Linear Algebra Appl. 432, 2273–2277 (2010)

    Article  MathSciNet  Google Scholar 

  19. Mohar, M., Thomassen, C.: Graphs on Surfaces. The John Hopkins University Press, Maryland (2001)

    MATH  Google Scholar 

  20. Neumann-Lara, V.: The dichromatic number of a digraph. J. Comb. Theory Ser. B 33, 265–270 (1982)

    Article  MathSciNet  Google Scholar 

  21. Neumann-Lara, V.: Vertex colourings in digraphs. Some problems. Seminar notes, University of Waterloo, July 8, 1985 (communicated by A. Bondy and S. Thomassé) (1985)

  22. Neumann-Lara, V.: The \(3\)- and \(4\)-chromatic tournaments of minimum order. Discrete Math. 135, 233–243 (1994)

    Article  MathSciNet  Google Scholar 

  23. Stiebitz, M., Toft, B.: Brooks’s theorem. In: Beineke, L.W., Wilson, R.J. (eds.) Topics in Chromatic Graph Theory. Encyclopedia of Mathematics and its Application, vol. 165, pp. 36–55. Cambridge University Press, Cambridge (2015)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stiebitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by the Simons Visiting Professor, by NSF grant DMS-1600592, and by grants 18-01-00353 and 19-01-00682 of the Russian Foundation for Basic Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostochka, A.V., Stiebitz, M. The Minimum Number of Edges in 4-Critical Digraphs of Given Order. Graphs and Combinatorics 36, 703–718 (2020). https://doi.org/10.1007/s00373-020-02147-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02147-y

Keywords

Mathematics Subject Classification

Navigation