Tangle and Ultrafilter: Game Theoretical Interpretation


This paper extends the concept of filter on X into (Xf), where X is a finite underlying set and f is a symmetric submodular function from \(2^X\) to N. Then, we show a cryptomorphism between a free ultrafilter and co-tangle on (Xf). The paper also provides game-theoretical interpretations of a branch decomposition tree and a free ultrafilter on (Xf).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Adler, I.: Marshals, monotone marshals, and hypertree-width. J. Graph Theory 47(4), 275–296 (2004)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Clark, B., Whittle, G.: Tangles, trees, and flowers. J. Comb. Theory Ser. B 103(3), 385–407 (2013)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Diestel, R.: Ends and tangles (2015). arXiv preprint arXiv:1510.04050v2

  4. 4.

    Diestel, R., Oum, S.I.: Unifying duality theorems for width parameters in graphs and matroids. I. Weak and strong duality (2014). arXiv preprint arXiv:1406.3797

  5. 5.

    Geelen, J., Gerards, B., Robertson, N., Whittle, G.: Obstructions to branch-decomposition of matroids. J. Comb. Theory Ser. B 96(4), 560–570 (2006)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Grohe, M.: Tangled up in blue (a survey on connectivity, decompositions, and tangles) (2016). arXiv preprint arXiv:1605.06704

  7. 7.

    Reed, B.: Tree width and tangles: a new connectivity measure and some applications. Surv. Comb. 241, 87–162 (1997)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Comb. Theory Ser. B 58(1), 22–33 (1993)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Sikorski, R.: Boolean Algebras, 3rd edn. Springer, Berlin (1969)

    Google Scholar 

  11. 11.

    Yamazaki, K.: Tangle and maximal ideal. In: Algorithms and Computation, 11th International Conference and Workshops, WALCOM 2017, Lecture Notes in Computer Science, vol. 10167, pp. 81–92. Springer (2017)

Download references


This work was supported by JSPS KAKENHI Grant number 15K00007.

Author information



Corresponding author

Correspondence to Koichi Yamazaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujita, T., Yamazaki, K. Tangle and Ultrafilter: Game Theoretical Interpretation. Graphs and Combinatorics 36, 319–330 (2020). https://doi.org/10.1007/s00373-019-02085-4

Download citation


  • 05C83 Graph minors
  • 03G05 Boolean algebras
  • 54A20 Convergence in general topology