Cayley Digraphs Associated to Arithmetic Groups

Abstract

We explore a paradigm which ties together seemingly disparate areas in number theory, additive combinatorics, and geometric combinatorics including the classical Waring problem, the Furstenberg–Sárközy theorem on squares in sets of integers with positive density, and the study of triangles (also called 2-simplices) in finite fields. Among other results we show that if \({\mathbb {F}}_q\) is the finite field of odd order q, then every matrix in \(Mat_d({\mathbb {F}}_q), d \ge 2\) is the sum of a certain (finite) number of orthogonal matrices, this number depending only on d, the size of the matrix, and on whether q is congruent to 1 or 3 (mod 4), but independent of q otherwise.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bennett, M., Iosevich, A., Pakianathan, J.: Three-point configurations determined by subsets of \({\mathbb{F}}_q^2\) via the Elekes–Sharir paradigm. Combinatorica 34(6), 689–706 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields, and applications. GAFA 14, 27–57 (2004)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Chapman, J., Erdogan, M.B., Hart, D., Iosevich, A., Koh, D.: Pinned distance sets, k-simplices. Wolff’s exponent in finite fields and sum-product estimates. Math. Z. 271, 63–93 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Demiroğlu Karabulut, Y.: Waring’s Problem in Finite Rings (arXiv preprint). arXiv:1709.04428 (2017)

  5. 5.

    Demiroğlu Karabulut, Y.: Unit-graphs and special unit-digraphs on matrix rings. Forum Math. 30(6), 1397–1412 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Erdős, P.: Integral distances. Bull. Am. Math. Soc. 51, 248–250 (1946)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 71, 204–256 (1977)

    Article  MATH  Google Scholar 

  8. 8.

    Hart, D., Iosevich, A.: Ubiquity of simplices in subsets of vector spaces over finite fields. Anal. Math. 34(1), 29–38 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Hart, D., Iosevich, A., Solymosi, J.: Sum-product estimates in finite fields via Kloosterman Sums. Int. Math. Res. Not. IMRN 5, Art. ID rnm007 (2007)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Henriksen, M.: Two classes of rings generated by their units. J. Algebra 31(1), 182–193 (1974)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Iosevich, A., Rudnev, M.: Erdős distance problem in vector spaces over finite fields. Trans. Am. Math. Soc. 359, 6127–6142 (2007)

    Article  MATH  Google Scholar 

  12. 12.

    Lang, S.: Algebra, 2nd edn. Addison-Wesley, Boston (1984)

    MATH  Google Scholar 

  13. 13.

    Sárközy, A.: On difference sets of sequences of integers III. Acta Math. Acad. Sci. Hungar. 31, 355–386 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Srivastava, A.: A survey of rings generated by units. Ann. Fac. Sci. Toulouse Math. (6) 19, 203–213 (2010) (Fascicule Special)

  15. 15.

    Tao, T.: The sum-product phenomenon in arbitrary rings. Contrib. Discrete Math. 4(2), 59–82 (2009)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Vaughan, R., Wooley, T.: Waring’s Problem: A Survey, Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 301–340 (2002)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Covert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Covert, D., Demiroğlu Karabulut, Y. & Pakianathan, J. Cayley Digraphs Associated to Arithmetic Groups. Graphs and Combinatorics 35, 393–417 (2019). https://doi.org/10.1007/s00373-018-2002-9

Download citation

Keywords

  • Waring’s problem
  • Cayley digraphs
  • Orthogonal matrices
  • General linear group
  • Finite fields

Mathematics Subject Classification

  • Primary 11P05
  • 05C35
  • Secondary 15B10