Skip to main content
Log in

Quotient-Complete Arc-Transitive Latin Square Graphs from Groups

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We consider latin square graphs \(\varGamma = \text {LSG}(H)\) of the Cayley table of a given finite group H. We characterize all pairs \((\varGamma ,G)\), where G is a subgroup of autoparatopisms of the Cayley table of H such that G acts arc-transitively on \(\varGamma \) and all nontrivial G-normal quotient graphs of \(\varGamma \) are complete. We show that H must be elementary abelian and determine the number k of complete normal quotients. This yields new infinite families of diameter two arc-transitive graphs with \(k = 1\) or \(k = 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amarra, C., Giudici, M., Praeger, C.E.: Quotient-complete arc-transitive graphs. Eur. J. Combin. 33, 1857–1881 (2012)

    Article  MathSciNet  Google Scholar 

  2. Amarra, C., Giudici, M., Praeger, C.E.: Symmetric diameter 2 graphs with affine-type vertex-quasiprimitive automorphism group. Des. Codes Cryptogr. 68, 127–139 (2013)

    Article  MathSciNet  Google Scholar 

  3. Amarra, C., Giudici, M., Praeger, C.E.: Affine primitive symmetric graphs with diameter two. Ars Mathematica Contemporanea 13(1), 137–165 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bailey, R.A.: Latin squares with highly transitive automorphism groups. J. Aust. Math. Soc. (Series A) 33, 18–22 (1982)

    Article  MathSciNet  Google Scholar 

  5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  6. Bruck, R.H.: Finite nets, II. Uniqueness and imbedding. Pac. J. Math. 13(2), 421–457 (1963)

    Article  MathSciNet  Google Scholar 

  7. Foulser, D.A.: The flag-transitive collineation groups of the finite Desarguesian affine planes. Can. J. Math. 16, 443–472 (1964)

    Article  MathSciNet  Google Scholar 

  8. Heinze, A., Klin, M.: Loops, Latin squares and strongly regular graphs: An algorithmic approach via algebraic combinatorics. In: Klin, M. (ed.) Algorithmic Algebraic Combinatorics and Gröbner Bases, pp. 3–65. Springer, Berlin (2009)

    Chapter  Google Scholar 

  9. Hering, C.: Transitive linear groups and linear groups which contain irreducible subgroups of prime order, ii. J. Algebra 93, 151–164 (1985)

    Article  MathSciNet  Google Scholar 

  10. Lang, S.: Algebra, 3rd edn. Addison-Wesley, Boston (1993)

    MATH  Google Scholar 

  11. Rosen, K.: Elementary Number Theory and its Applications. Addison-Wesley, Boston (1984)

    MATH  Google Scholar 

  12. Taylor, D.E.: The Geometry of the Classical Groups. Heldermann, Berlin (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Pablo Spiga for introducing the graphs and corresponding automorphism groups in Example 3 and John Bamberg for pointing out the connection to finite nets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Amarra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarra, C. Quotient-Complete Arc-Transitive Latin Square Graphs from Groups. Graphs and Combinatorics 34, 1651–1669 (2018). https://doi.org/10.1007/s00373-018-1948-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1948-y

Keywords

Navigation