Graphs and Combinatorics

, Volume 34, Issue 6, pp 1565–1580

# Chorded Pancyclicity in k-Partite Graphs

Original Paper

## Abstract

We prove that for any integers $$p\ge k\ge 3$$ and any k-tuple of positive integers $$(n_1,\ldots ,n_k)$$ such that $$p=\sum _{i=1}^k{n_i}$$ and $$n_1\ge n_2\ge \cdots \ge n_k$$, the condition $$n_1\le {p\over 2}$$ is necessary and sufficient for every subgraph of the complete k-partite graph $$K(n_1,\ldots ,n_k)$$ with at least
\begin{aligned} {{4 -2p+2n_1+\sum _{i=1}^{k} n_i(p-n_i)}\over 2} \end{aligned}
edges to be chorded pancyclic. Removing all but one edge incident with any vertex of minimum degree in $$K(n_1,\ldots ,n_k)$$ shows that this result is best possible. Our result implies that for any integers, $$k\ge 3$$ and $$n\ge 1$$, a balanced k-partite graph of order kn with has at least $${{(k^2-k)n^2-2n(k-1)+4}\over 2}$$ edges is chorded pancyclic. In the case $$k=3$$, this result strengthens a previous one by Adamus, who in 2009 showed that a balanced tripartite graph of order 3n, $$n \ge 2$$, with at least $$3n^2 - 2n + 2$$ edges is pancyclic.

## Keywords

Hamiltonicity Pancyclicity Bipancyclicity Chorded pancycliclity Bipartite graphs k-Partite graphs

05C45

## References

1. 1.
Adamus, J.: Edge condition for hamiltonicity in balanced tripartite graphs. Opuscula Math. 29, 337–343 (2009)
2. 2.
Bondy, J.A.: Pancyclic graphs I. J. Comb. Theory Ser. B 11, 80–84 (1971)
3. 3.
Chen, G., Faudree, R., Gould, R., Jacobson, M.S., Lesniak, L.: Hamiltonicity of balanced $$k$$-partite graphs. Graphs Comb. 11, 221–231 (1995)
4. 4.
Chen, G., Gould, R.J., Gu, X., Saito, A.: Cycles with a chord in dense graphs. Discrete Math. 341, 2131–2141 (2018)
5. 5.
Chen, G., Jacobson, M.S.: Degree sum conditions for hamiltonicity on $$k$$-partite graphs. Graphs Comb. 13, 325–343 (1997)
6. 6.
Cream, M., Gould, R.J., Hirohata, K.: A note on extending Bondy’s meta-conjecture. Australas. J. Comb. 67(3), 463–469 (2017)
7. 7.
DeBiasio, L., Krueger, R.A., Pritikin, D., Thompson, E.: Hamiltonian cycles in fair $$k$$-partite graphs (2017). arXiv:1707.07633v2 [math.CO]
8. 8.
Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2(3), 69–81 (1952)
9. 9.
Entringer, R.C., Schmeichel, E.: Edge conditions and cycle structure in bipartite graphs. Ars Comb. 26, 229–232 (1988)
10. 10.
Moon, J., Moser, L.: On hamiltonian bipartite graphs. Isr. J. Math. 1, 163–165 (1963)
11. 11.
Ore, O.: Note on hamilton circuits. Am. Math. Mon. 67(1), 55–55 (1960)
12. 12.
Pósa, L.: A theorem concerning hamiltonian lines. Alkalmaz. Mat. Lapok. 7, 225–226 (1962)