Skip to main content
Log in

Burning Graphs: A Probabilistic Perspective

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we study a graph parameter that was recently introduced, the burning number, focusing on a few probabilistic aspects of the problem. The original burning number is revisited and analyzed for binomial random graphs \({\mathcal {G}}(n,p)\), random geometric graphs, and the Cartesian product of paths. Moreover, new variants of the burning number are introduced in which a burning sequence of vertices is selected according to some probabilistic rules. We analyze these new graph parameters for paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acan, H., Collevecchio, A., Mehrabian, A., Wormald, N.: On the push and pull protocol for rumour spreading. PODC 2015 (to appear)

  2. Alder, J., Lev, E.: Bootstrap percolation: visualizations and applications. Braz. J. Phys. 33, 641–644 (2003)

    Article  Google Scholar 

  3. Alon, N., Prałat, P., Wormald, N.: Cleaning regular graphs with brushes. SIAM J. Discrete Math. 23, 233–250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Spencer, J.: The Probabilistic Method, 3rd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  5. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  6. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Bounds on the Burning Number. Submitted (2016)

  7. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Burning a Graph is Hard. Submitted (2016)

  8. Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph. Int. Math. 1–2, 85–100 (2016)

    MathSciNet  Google Scholar 

  9. Diaz, J., Mitsche, D., Perarnau, G., Perez-Gimenez, X.: On the relation between graph distance and Euclidean distance in random geometric graphs. Adv. Appl. Probab. 48(3), 848–864 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. Aust. J. Comb. 43, 57–77 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Goel, A., Rai, S., Krishnamachari, B.: Sharp thresholds for monotone properties in random geometric graphs. Ann. Appl. Probab. 15, 364–370 (2005)

    Article  MATH  Google Scholar 

  12. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  13. Kehagias, A., Mitsche, D., Prałat, P.: Cops and invisible robbers: the cost of drunkenness. Theor. Comput. Sci. 481, 100–120 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kehagias, A., Prałat, P.: Some remarks on cops and drunk robbers. Theor. Comput. Sci. 463, 133–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Land, M., Lu, L.: An upper bound on burning number of graphs. arXiv:1606.07614

  16. Penrose, M.: The longest edge of the random minimal spanning tree. Ann. Appl. Probab. 7(2), 340–361 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability, Oxford U.P., Oxford (2003)

    Book  MATH  Google Scholar 

  18. Prałat, P.: Cleaning random \(d\)-regular graphs with Brooms. Gr. Comb. 27, 567–584 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Prałat, P.: Cleaning random graphs with brushes. Aust. J. Comb. 43, 237–251 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Prałat, P.: Graphs with average degree smaller than 30/11 burn slowly. Gr. Comb. 30(2), 455–470 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Prałat, P.: Sparse graphs are not flammable. SIAM J. Discrete Math. 27(4), 2157–2166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roshanbin, E.: Burning a graph as a model of social contagion. PhD Thesis, Dalhousie University (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Mitsche.

Additional information

D. Mitsche acknowledges support of the PROCOPE-DAAD project RanConGraph (ref. 57134837). P. Prałat acknowledges support from NSERC and Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsche, D., Prałat, P. & Roshanbin, E. Burning Graphs: A Probabilistic Perspective. Graphs and Combinatorics 33, 449–471 (2017). https://doi.org/10.1007/s00373-017-1768-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1768-5

Keywords

Navigation