Graphs and Combinatorics

, Volume 33, Issue 1, pp 1–41 | Cite as

Design Theory from the Viewpoint of Algebraic Combinatorics

  • Eiichi Bannai
  • Etsuko Bannai
  • Hajime Tanaka
  • Yan Zhu


We give a survey on various design theories from the viewpoint of algebraic combinatorics. We will start with the following themes.
  1. (i)

    The similarity between spherical t-designs and combinatorial t-designs, as well as t-designs in Q-polynomial association schemes.

  2. (ii)

    Euclidean t-designs as a two-step generalization of spherical t-designs.

  3. (iii)

    Relative t-designs as a two-step generalization of t-designs in Q-polynomial association schemes, and the similarity with Euclidean t-designs.

  4. (iv)

    Fisher type lower bounds for the sizes of these designs as well as the classification problems of some of tight t-designs and/or tight relative t-designs.

Our emphasis will be focused on the proposal to study relative t-designs, mostly tight relative t-designs, in known classical examples of P- and Q-polynomial association schemes. We relate our study with the representation theoretical aspect of the relevant association schemes and permutation groups, due to Charles Dunkl and Dennis Stanton and others. We propose several open problems, which seem to play a key role in this research direction. We also put emphasis on the future research directions in this research area and not on presenting the details of the established results on the study of design theory. In particular, we propose to study t-designs in each shell of these classical P- and Q-polynomial association schemes. In general, each shell is not Q-polynomial. It may be even non-commutative in some cases. The importance of the use of Terwilliger algebras in the study of relative t-designs in such association schemes will also be highlighted.


Association scheme t-design Relative t-design Spherical design Euclidean design Tight design Terwilliger algebra 


  1. 1.
    Abdukhalikov, K., Bannai, Ei, Suda, S.: Association schemes related to universally optimal configurations, Kerdock codes and extremal Euclidean line-sets. J. Comb. Theory Ser. A 116(2), 434–448 (2009). arXiv:0802.1425 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Assmus, E.F., Key, J.D.: Designs and their codes. Cambridge University Press, Cambridge (1992)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21(3), 909–924 (2008). arXiv:math/0608426 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ballinger, B., Blekherman, G., Cohn, H., Giansiracusa, N., Kelly, E., Schürmann, A.: Experimental study of energy-minimizing point configurations on spheres. Exp. Math. 18(3), 257–283 (2009). arXiv:math/0611451 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bannai, Ei.: On tight designs. Q. J. Math. Oxf. Ser. (2) 28(112), 433–448 (1977)Google Scholar
  6. 6.
    Bannai, Ei.: On some spherical \(t\)-designs. J. Comb. Theory Ser. A 26(2), 157–161 (1979)Google Scholar
  7. 7.
    Bannai, Ei.: Spherical \(t\)-designs and group representations. Contemp. Math. 34, 85–107 (1984)Google Scholar
  8. 8.
    Bannai, Ei.: Spherical \(t\)-designs which are orbits of finite groups. J. Math. Soc. Jpn. 36(2), 341–354 (1984)Google Scholar
  9. 9.
    Bannai, Ei.: Rigid spherical \(t\)-designs and a theorem of Y. Hong. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(3), 485–489 (1987)Google Scholar
  10. 10.
    Bannai, Ei., Bannai, Et.: Algebraic combinatorics on spheres (in Japanese). Springer, Tokyo (1999)Google Scholar
  11. 11.
    Bannai, Ei., Bannai, Et.: On Euclidean tight \(4\)-designs. J. Math. Soc. Jpn. 58(3), 775–804 (2006)Google Scholar
  12. 12.
    Bannai, Ei., Bannai, Et.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30(6), 1392–1425 (2009)Google Scholar
  13. 13.
    Bannai, Ei., Bannai, Et.: On antipodal spherical \(t\)-designs of degree \(s\) with \(t\ge 2s-3\). J. Comb. Inf. Syst. Sci. 34, 33–50 (2009). arXiv:0802.2905
  14. 14.
    Bannai, Ei., Bannai, Et.: Spherical designs and Euclidean designs. In: Dong, C., Li, F. (eds.) Recent Developments in Algebra and Related Areas, Advanced Lectures in Mathematics (ALM), vol. 8, pp. 1–37. International Press, Somerville (2009)Google Scholar
  15. 15.
    Bannai, Ei., Bannai, Et.: Euclidean designs and coherent configurations. In: Brualdi, R.A., Hedayat, S., Kharaghani, H., Khosrovshahi, G.B., Shahriari, S. (eds.) Combinatorics and Graphs, Contemporary Mathematics, vol. 531, pp. 59–93. American Mathematical Society, Providence, RI (2010). arXiv:0905.2143
  16. 16.
    Bannai, Ei., Bannai, Et.: Tight \(9\)-designs on two concentric spheres. J. Math. Soc. Jpn. 63(4), 1359–1376 (2011). arXiv:1006.0443
  17. 17.
    Bannai, Ei., Bannai, Et.: Remarks on the concepts of \(t\)-designs. J. Appl. Math. Comput. 40(1–2), 195–207 (2012)Google Scholar
  18. 18.
    Bannai, Ei., Bannai, Et.: Tight \(t\)-designs on two concentric spheres. Mosc. J. Comb. Numb. Theory 4(1), 52–77 (2014)Google Scholar
  19. 19.
    Bannai, Ei., Bannai, Et., Bannai, H.: Uniqueness of certain association schemes. Eur. J. Comb. 29(6), 1379–1395 (2008)Google Scholar
  20. 20.
    Bannai, Ei., Bannai, Et., Bannai, H.: On the existence of tight relative \(2\)-designs on binary Hamming association schemes. Discret. Math. 314, 17–37 (2014). arXiv:1304.5760
  21. 21.
    Bannai, Ei., Bannai, Et., Hirao, M., Sawa, M.: Cubature formulas in numerical analysis and Euclidean tight designs. Eur. J. Comb. 31(2), 423–441 (2010)Google Scholar
  22. 22.
    Bannai, Ei., Bannai, Et., Ikuta, T., Kim, K., Zhu, Y.: Harmonic index designs in binary Hamming schemes (submitted)Google Scholar
  23. 23.
    Bannai, Ei., Bannai, Et., Ito, T.: Introduction to algebraic combinatorics (in Japanese). Kyoritsu Shuppan, Tokyo (2016)Google Scholar
  24. 24.
    Bannai, Ei., Bannai, Et., Suda, S., Tanaka, H.: On relative \(t\)-designs in polynomial association schemes. Electron. J. Comb. 22(4), #P4.47 (2015). arXiv:1303.7163
  25. 25.
    Bannai, Ei., Bannai, Et., Tanaka, H., Zhu, Y.: Tight relative t-designs on two shells in binary Hamming association schemes (in preparation) Google Scholar
  26. 26.
    Bannai, Ei., Bannai, Et., Zhu, Y.: A survey on tight Euclidean \(t\)-designs and tight relative \(t\)-designs in certain association schemes. Proc. Steklov Inst. Math. 288(1), 189–202 (2015)Google Scholar
  27. 27.
    Bannai, Ei., Bannai, Et., Zhu, Y.: Relative \(t\)-designs in binary Hamming association scheme \(H(n, 2)\). Des. Codes Cryptogr. doi: 10.1007/s10623-016-0200-0. arXiv:1512.01726
  28. 28.
    Bannai, Ei., Damerell, R.M.: Tight spherical designs I. J. Math. Soc. Jpn. 31(1), 199–207 (1979)Google Scholar
  29. 29.
    Bannai, Ei., Damerell, R.M.: Tight spherical designs II. J. Lond. Math. Soc. (2) 21(1), 13–30 (1980)Google Scholar
  30. 30.
    Bannai, Ei., Ito, T.: Algebraic combinatorics I. Benjamin/Cummings, Menlo Park (1984)Google Scholar
  31. 31.
    Bannai, Ei., Kawanaka, N., Song, S.: The character table of the Hecke algebra \({\fancyscript {H}}(\text{GL}_{2n}({\bf F} _q),\text{ Sp }_{2n}({\bf F}_q))\). J. Algebra 129(2), 320–366 (1990)Google Scholar
  32. 32.
    Bannai, Ei., Munemasa, A., Venkov, B.: The nonexistence of certain tight spherical designs. Algebra i Analiz 16(4), 1–23 (2004) (reprinted in St. Petersburg Math. J. 16(4), 609–625 (2005))Google Scholar
  33. 33.
    Bannai, Ei., Okuda, T., Tagami, M.: Spherical designs of harmonic index \(t\). J. Approx. Theory 195, 1–18 (2015). arXiv:1308.5101
  34. 34.
    Bannai, Ei., Sloane, N.J.A.: Uniqueness of certain spherical codes. Can. J. Math 33(2), 437–449 (1981)Google Scholar
  35. 35.
    Bannai, Et.: On antipodal Euclidean tight \((2e+1)\)-designs. J. Algebraic Comb. 24(4), 391–414 (2006)Google Scholar
  36. 36.
    Beth, T., Jungnickel, D., Lenz, H.: Design theory, 2nd edn. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  37. 37.
    Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. (2) 178(2), 443–452 (2013). arXiv:1009.4407 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Bondarenko, A., Radchenko, D., Viazovska, M.: Well-separated spherical designs. Constr. Approx. 41(1), 93–112 (2015). arXiv:1303.5991 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P., Saff, E.B., Stoyanova, M.M.: Universal upper and lower bounds on energy of spherical designs. Dolomites Res. Notes Approx. 8(Special Issue), 51–65 (2015). arXiv:1509.07837
  40. 40.
    Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-regular graphs. Springer-Verlag, Berlin (1989)CrossRefzbMATHGoogle Scholar
  41. 41.
    Cameron, P.J., Seidel, J.J.: Quadratic forms over \(GF(2)\). Indag. Math. 35, 1–8 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Chen, X., Frommer, A., Lang, B.: Computational existence proofs for spherical \(t\)-designs. Numer. Math. 117(2), 289–305 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Chen, Z., Zhao, D.: On symmetric BIBDs with same triple configuration (submitted) Google Scholar
  44. 44.
    Chen, Z., Zhao, D.: Optimal arrangements in Euclidean space (in preparation) Google Scholar
  45. 45.
    Chihara, L.: On the zeros of the Askey-Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18(1), 191–207 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Cohn, H., Conway, J.H., Elkies, N.D., Kumar, A.: The \(D_4\) root system is not universally optimal. Exp. Math. 16(3), 313–320 (2007). arXiv:math/0607447 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007). arXiv:math/0607446 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Cohn, H., Zhao, Y.: Energy-minimizing error-correcting codes. IEEE Trans. Inf. Theory 60, 7442–7450 (2014). arXiv:1212.1913 MathSciNetCrossRefGoogle Scholar
  49. 49.
    Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of combinatorial designs, 2nd edn. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  50. 50.
    Cui, Z., Xia, J., Xiang, Z.: Rational designs (preprint) Google Scholar
  51. 51.
    Van Dam, E.R., Koolen, J.H., Tanaka, H.: Distance-regular graphs. Electron. J. Comb. # DS22 (2016). arXiv:1410.6294
  52. 52.
    D’Angeli, D., Donno, A.: Crested products of Markov chains. Ann. Appl. Probab. 19(1), 414–453 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Delsarte, P.: An algebraic approach to the association schemes of coding theory, Thesis, Universite Catholique de Louvain (1973), Philips Res. Repts Suppl. 10 (1973)Google Scholar
  54. 54.
    Delsarte, P.: Association schemes and \(t\)-designs in regular semilattices. J. Comb. Theory Ser. A 20(2), 230–243 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Delsarte, P.: Pairs of vectors in the space of an association scheme. Philips Res. Rep. 32(5–6), 373–411 (1977)MathSciNetGoogle Scholar
  56. 56.
    Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6(3), 363–388 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Delsarte, P., Seidel, J.J.: Fisher type inequalities for Euclidean \(t\)-designs. Linear Algebra Appl. 114(115), 213–230 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Dukes, P., Short-Gershman, J.: Nonexistence results for tight block designs. J. Algebraic Comb. 38(1), 103–119 (2013). arXiv:1110.3463
  59. 59.
    Dunkl, C.F.: A Krawtchouk polynomial addition theorem and wreath products of symmetric groups. Indiana Univ. Math. J. 25(4), 335–358 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Dunkl, C.F.: An addition theorem for some \(q\)-Hahn polynomials. Monatsh. Math. 85(1), 5–37 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Enomoto, H., Ito, N., Noda, R.: On tight \(4\)-designs. Osaka J. Math. 12(2), 493–522 (1975)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Ericson, T., Zinoviev, V.: Codes on euclidean spheres. North-Holland Publishing Co., Amsterdam (2001)zbMATHGoogle Scholar
  63. 63.
    Gijswijt, D.: Matrix algebras and semidefinite programming techniques for codes, Thesis, University of Amsterdam (2005). arXiv:1007.0906
  64. 64.
    Gijswijt, D., Schrijver, A., Tanaka, H.: New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming. J. Comb. Theory Ser. A 113(8), 1719–1731 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Goethals, J.M., Seidel, J.J.: Spherical designs. Proc. Sympos. Pure Math., vol. 34, pp. 255–272. American Mathematical Society, Providence, RI (1979)Google Scholar
  66. 66.
    Goethals, J.M., Seidel, J.J.: Cubature formulae, polytopes and spherical designs. In: Davis, C., Grünbaum, B., Sherk, F.A. (eds.) The geometric vein: The Coxeter Festschrift, pp. 203–218. Springer-Verlag, New York-Berlin (1981)CrossRefGoogle Scholar
  67. 67.
    Green, J.A.: The characters of the finite general linear groups. Trans. Am. Math. Soc. 80, 402–447 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Hall Jr., M.: Combinatorial theory, 2nd edn. Wiley, New York (1986)zbMATHGoogle Scholar
  69. 69.
    Hashikawa, T.: Conformal designs and minimal conformal weight spaces of vertex operator superalgebras. Pac. J. Math. 284(1), 121–145 (2016)Google Scholar
  70. 70.
    Höhn, G.: Conformal designs based on vertex operator algebras. Adv. Math. 217(5), 2301–2335 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Hong, Y.: On spherical \(t\)-designs in \(\mathbb{R}^2\). Eur. J. Comb. 3(3), 255–258 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Hughes, D.R.: On \(t\)-designs and groups. Am. J. Math. 87, 761–778 (1965)CrossRefzbMATHGoogle Scholar
  73. 73.
    Ionin, Y.J., Shrikhande, M.S.: Combinatorics of symmetric designs. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  74. 74.
    Ito, T.: Designs in a coset geometry: Delsarte theory revisited. Eur. J. Comb. 25(2), 229–238 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Kageyama, S.: A property of \(T\)-wise balanced designs. Ars Comb. 31, 237–238 (1991)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Korevaar, J., Meyers, J.L.H.: Spherical faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere. Integral Transform. Spec. Funct. 1(2), 105–117 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Kuijlaars, A.B.J.: The minimal number of nodes in Chebyshev type quadrature formulas. Indag. Math. 4(3), 339–362 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Kuperberg, G.: Special moments. Adv. Appl. Math. 34(4), 853–870 (2005). arXiv:math/0408360
  79. 79.
    Lambeck, E.W.: Contributions to the theory of distance regular graphs, Thesis. Eindhoven University of Technology (1990)Google Scholar
  80. 80.
    Larman, D.G., Rogers, C.A., Seidel, J.J.: On \(2\)-distance sets in Euclidean space. Bull. Lond. Math. Soc. 9(3), 261–267 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Li, Z., Bannai, Ei., Bannai, Et.: Tight relative \(2\)- and \(4\)-designs on binary Hamming association schemes. Graphs Comb. 30(1), 203–227 (2014)Google Scholar
  82. 82.
    van Lint, J.H., Wilson, R.M.: A course in combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  83. 83.
    Lyubich, Y.I., Vaserstein, L.N.: Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs. Geom. Dedicata 47(3), 327–362 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Macdonald, I.G.: Symmetric functions and hall polynomials, 2nd edn. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  85. 85.
    Martin, W.J.: Mixed block designs. J. Comb. Des. 6(2), 151–163 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Martin, W.J.: Designs in product association schemes. Des. Codes Cryptogr. 16(3), 271–289 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Martin, W.J., Tanaka, H.: Commutative association schemes. European J. Combin. 30(6), 1497–1525 (2009). arXiv:0811.2475
  88. 88.
    Miezaki, T.: Conformal designs and D. H. Lehmer’s conjecture. J. Algebra 374, 59–65 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Möller, H.M.: Kubaturformeln mit minimaler Knotenzahl. Numer. Math. 25(2), 185–200 (1975/76)Google Scholar
  90. 90.
    Möller, H.M.: Lower bounds for the number of nodes in cubature formulae. In: Hmmerlin, G. (ed.) Numerische Integration, pp. 221–230. Birkhäuser Verlag, Basel-Boston, Mass (1979)CrossRefGoogle Scholar
  91. 91.
    Munemasa, A.: An analogue of \(t\)-designs in the association schemes of alternating bilinear forms. Graphs Comb. 2(3), 259–267 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Musin, O.R., Tarasov, A.S.: The strong thirteen spheres problem. Discret. Comput. Geom. 48(1), 128–141 (2012). arXiv:1002.1439
  93. 93.
    Musin, O.R., Tarasov, A.S.: The Tammes problem for \(N=14\). Exp. Math. 24(4), 460–468 (2015). arXiv:1410.2536
  94. 94.
    Nebe, G., Venkov, B.: On tight spherical designs. Algebra i Analiz 24 (3), 163–171 (2012) (reprinted in St. Petersburg Math. J. 24(3), 485–491 (2013))Google Scholar
  95. 95.
    Neumaier, A., Seidel, J.J.: Discrete measures for spherical designs, eutactic stars and lattices. Nederl. Akad. Wetensch. Proc. Ser. A 91=Indag. Math. 50(3), 321–334 (1988)Google Scholar
  96. 96.
    Nozaki, H.: A generalization of Larman-Rogers-Seidel’s theorem. Discrete Math. 311(10–11), 792–799 (2011). arXiv:0912.2387
  97. 97.
    Okuda, T.: Designs on the homogeneous space of a compact Gelfand pair (in Japanese). RIMS Kôkyûroku 2012, 141–154 (1811)Google Scholar
  98. 98.
    Okuda, T.: Relation between spherical designs through a Hopf map. arXiv:1506.08414
  99. 99.
    Okuda, T., Yu, W.: A new relative bound for equiangular lines and nonexistence of tight spherical designs of harmonic index \(4\). Eur. J. Comb. 53, 96–103 (2016). arXiv:1409.6995 MathSciNetCrossRefzbMATHGoogle Scholar
  100. 100.
    Peterson, C.: On tight \(6\)-designs. Osaka J. Math. 14(2), 417–435 (1977)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Rabau, P., Bajnok, B.: Bounds for the number of nodes in Chebyshev type quadrature formulas. J. Approx. Theory 67(2), 199–214 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    Ray-Chaudhuri, D.K., Wilson, R.M.: On \(t\)-designs. Osaka J. Math. 12(3), 737–744 (1975)zbMATHGoogle Scholar
  103. 103.
    Schrijver, A.: New code upper bounds from the Terwilliger algebra and semidefinite programming. IEEE Trans. Inf. Theory 51(8), 2859–2866 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  104. 104.
    Seymour, P.D., Zaslavsky, T.: Averaging sets: a generalization of mean values and spherical designs. Adv. Math. 52(3), 213–240 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  105. 105.
    Sobolev, L.: Cubature formulas on the sphere invariant under finite groups of rotation. Soviet Math. Dokl. 3, 1307–1310 (1962)Google Scholar
  106. 106.
    Home page of Ted Spence.
  107. 107.
    Stanton, D.: Some \(q\)-Krawtchouk polynomials on Chevalley groups. Am. J. Math. 102(4), 625–662 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  108. 108.
    Stanton, D.: Three addition theorems for some \(q\)-Krawtchouk polynomials. Geom. Dedicata 10(1–4), 403–425 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  109. 109.
    Stanton, D.: A partially ordered set and \(q\)-Krawtchouk polynomials. J. Comb. Theory Ser. A 30(3), 27–284 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  110. 110.
    Stanton, D.: Harmonics on posets. J. Comb. Theory Ser. A 40(1), 136–149 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  111. 111.
    Stanton, D.: \(t\)-designs in classical association schemes. Graphs Comb. 2(3), 283–286 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  112. 112.
    Tanaka, H.: New proofs of the Assmus-Mattson theorem based on the Terwilliger algebra. European J. Comb. 30(3), 736–746 (2009). arXiv:math/0612740
  113. 113.
    Tarnanen, H., Aaltonen, M.J., Goethals, J.M.: On the nonbinary Johnson scheme. Eur. J. Comb. 6(3), 279–285 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  114. 114.
    Terwilliger, P.: The subconstituent algebra of an association scheme I. J. Algebraic Comb. 1(4), 363–388 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  115. 115.
    Terwilliger, P.: The subconstituent algebra of an association scheme II. J. Algebraic Comb. 2(1), 73–103 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  116. 116.
    Terwilliger, P.: The subconstituent algebra of an association scheme III. J. Algebraic Comb. 2(2), 177–210 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  117. 117.
    Terwilliger, P.: Quantum matroids. In: Bannai, E., Munemasa, A.(eds.) Progress in algebraic combinatorics, advanced studies in pure mathematics, vol. 24, pp. 323–441. The Mathematical Society of Japan, Tokyo (1996)Google Scholar
  118. 118.
    Venkov, B.: On even unimodular extremal lattices (in Russian), Tr. Mat. Inst. Steklova 165 (1984), 43–48. Proc. Steklov Inst. Math. 165(3), 47–52 (1985)Google Scholar
  119. 119.
    Wagner, G.: On averaging set. Monatsh. Math. 111(1), 69–78 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  120. 120.
    Woodall, D.R.: Square \(\lambda \)-linked designs. Proc. Lond. Math. Soc. 20(3), 669–687 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  121. 121.
    Xiang, Z.: A Fisher type inequality for weighted regular \(t\)-wise balanced designs. J. Comb. Theory Ser. A 119(7), 1523–1527 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  122. 122.
    Xiang, Z.: Nonexistence on nontrivial tight \(8\)-designs (preprint) Google Scholar
  123. 123.
    Yamauchi, H.: Extended Griess algebras, conformal designs and Matsuo-Norton trace formulae. In: Bai, C., Gazeau, J.-P., Ge, M.-L.(eds.) Symmetries and groups in contemporary physics, pp. 423–428. World Scientific Publishing Co. Pte. Ltd., Hackensack (2013)Google Scholar
  124. 124.
    Yue, H., Hou, B., Gao, S.: Note on the tight relative \(2\)-designs on \(H(n,2)\). Discret. Math. 338(2), 196–208 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  125. 125.
    Zelevinsky, A.V.: Representations of finite classical groups: A Hopf algebra approach, lecture notes in mathematics, vol. 869. Springer-Verlag, Berlin-New York (1981)zbMATHGoogle Scholar
  126. 126.
    Zhu, Y., Bannai, Ei., Bannai, Et.: Tight relative \(2\)-designs on two shells in Johnson association schemes. Discret. Math. 339(2), 957–973 (2016)Google Scholar
  127. 127.
    Zhu, Y., Bannai, Ei., Bannai, Et., Kim, K., Yu, W.: More on spherical designs of harmonic index \(t\). arXiv:1507.05373

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.School of Mathematical SciencesShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Misakigaoka 2-8-21ItoshimaJapan
  3. 3.Research Center for Pure and Applied Mathematics, Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations