Graphs and Combinatorics

, Volume 32, Issue 6, pp 2393–2413 | Cite as

On the Choosability of Claw-Free Perfect Graphs

  • Sylvain Gravier
  • Frédéric Maffray
  • Lucas Pastor
Original Paper

Abstract

It has been conjectured that for every claw-free graph G the choice number of G is equal to its chromatic number. We focus on the special case of this conjecture where G is perfect. Claw-free perfect graphs can be decomposed via clique-cutset into two special classes called elementary graphs and peculiar graphs. Based on this decomposition we prove that the conjecture holds true for every claw-free perfect graph with maximum clique size at most 4.

Keywords

List-coloring Choosability Claw-free Perfect 

References

  1. 1.
    Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12(2), 125–134 (1992)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chvàtal, V., Sbihi, N.: Recognizing claw-free perfect graphs. J. Comb. Theor. Ser. B 44(2), 154–176 (1988)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congr. Num. 26, 125–157 (1979)MATHGoogle Scholar
  5. 5.
    Galvin, F.: The list chromatic index of a bipartite multigraph. J. Comb. Theor. Ser. B 63(1), 153–158 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gravier, S., Maffray, F.: Choice number of 3-colorable elementary graphs. Discrete Math. 165–166(15), 353–358 (1997)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gravier, S., Maffray, F.: Graphs whose choice number is equal to their chromatic number. J. Graph Theory 27(2), 87–97 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gravier, S., Maffray, F.: On the choice number of claw-free perfect graphs. Discrete Math. 276(1–3), 211–218 (2004). 6th International Conference on Graph TheoryMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Häggkvist, R., Chetwynd, A.: Some upper bounds on the total and list chromatic numbers of multigraphs. J. Graph Theor. 16(5), 503–516 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hall, P.: On Representatives of subsets. Classic Papers in Combinatorics 55–62 (1987)Google Scholar
  11. 11.
    Maffray, F., Reed, B.A.: A description of claw-free perfect graphs. J Comb. Theor. Ser. B 75(1), 134–156 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Parthasarathy, K.R., Ravindra, G.: The strong perfect-graph conjecture is true for \(K_{1,3}\)-free graphs. J Comb. Theor. Ser. B 21(3), 212–223 (1976)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Schrijver, A.: Combinatorial Optimization : Polyhedra and Efficiency. Springer, Berlin (2003)MATHGoogle Scholar
  14. 14.
    Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55, 221–232 (1985)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Whitesides, S.H.: An algorithm for finding clique cut-sets. Inf. Proc. Lett. 12, 31–32 (1981)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Sylvain Gravier
    • 1
  • Frédéric Maffray
    • 2
  • Lucas Pastor
    • 3
  1. 1.CNRS, Institut FourierUniversity of GrenobleGrenobleFrance
  2. 2.CNRS, Laboratoire G-SCOPUniversity of GrenobleGrenobleFrance
  3. 3.Laboratoire G-SCOPUniversity of GrenobleGrenobleFrance

Personalised recommendations