Skip to main content

Computing Planarity in Computable Planar Graphs


A graph is computable if there is an algorithm which decides whether given vertices are adjacent. Having a procedure for deciding the edge set might not help compute other properties or features of the graph, however. The goal of this paper is to investigate the extent to which features related to the planarity of a graph might or might not be computable. We propose three definitions for what it might mean for a computable graph to be computably planar and for each build a computable planar graph which fails to be computably planar. We also consider these definitions in the context of highly computable graphs, those for which there is an algorithm which computes the degree of a given vertex.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Bean, D.R.: Effective coloration. J. Symbolic Logic 41(2), 469–480 (1976)

  2. Bean, D.R.: Recursive Euler and Hamilton paths. Proc. Am. Math. Soc. 55(2), 385–394 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  3. Carstens, H.G., Päppinghaus, P.: Recursive coloration of countable graphs. Ann. Pure Appl. Logic 25(1), 19–45 (1983). doi:10.1016/0168-0072(83)90052-0

    MathSciNet  Article  MATH  Google Scholar 

  4. Diestel, R.: Graph theory, Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14279-6

  5. Erdös, P.: Some remarks on set theory. Proc. Am. Math. Soc. 1, 127–141 (1950)

    MathSciNet  Article  MATH  Google Scholar 

  6. Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math. 11, 229–233 (1948)

    MathSciNet  MATH  Google Scholar 

  7. Gasarch, W.: A survey of recursive combinatorics. In: Handbook of Recursive Mathematics, vol. 2, Stud. Logic Found. Math., vol. 139, pp. 1041–1176. North-Holland, Amsterdam (1998). doi:10.1016/S0049-237X(98)80049-9

  8. Harel, D.: Hamiltonian paths in infinite graphs. Israel J. Math. 76(3), 317–336 (1991). doi:10.1007/BF02773868

    MathSciNet  Article  MATH  Google Scholar 

  9. Jura, M., Levin, O., Markkanen, T.: Domatic partitions of computable graphs. Arch. Math. Logic 53(1–2), 137–155 (2014). doi:10.1007/s00153-013-0359-2

    MathSciNet  Article  MATH  Google Scholar 

  10. Kierstead, H.A.: Recursive colorings of highly recursive graphs. Can. J. Math. 33(6), 1279–1290 (1981). doi:10.4153/CJM-1981-097-8

    MathSciNet  Article  MATH  Google Scholar 

  11. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979). doi:10.1137/0136016

    MathSciNet  Article  MATH  Google Scholar 

  12. Manaster, A.B., Rosenstein, J.G.: Effective matchmaking (recursion theoretic aspects of a theorem of Philip Hall). Proc. Lond. Math. Soc. 3(25), 615–654 (1972)

    MathSciNet  Article  MATH  Google Scholar 

  13. Schmerl, J.H.: Recursive colorings of graphs. Can. J. Math. 32(4), 821–830 (1980). doi:10.4153/CJM-1980-062-7

    MathSciNet  Article  MATH  Google Scholar 

  14. Simpson, S.G.: Subsystems of second order arithmetic, 2nd edn. Perspectives in Logic. Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie (2009). doi:10.1017/CBO9780511581007

  15. Soare, R.I.: Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. A Study of Computable Functions and Computably Generated Sets. Springer, Berlin (1987). doi:10.1007/978-3-662-02460-7

  16. Thomassen, C.: Straight line representations of infinite planar graphs. J. Lond. Math. Soc. (2) 16(3), 411–423 (1977). doi:10.1112/jlms/s2-16.3.411

    MathSciNet  Article  MATH  Google Scholar 

Download references


The authors thank the anonymous referee for a number of helpful suggestions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Oscar Levin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levin, O., McMillan, T. Computing Planarity in Computable Planar Graphs. Graphs and Combinatorics 32, 2525–2539 (2016).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Infinite graphs
  • Planar graphs
  • Computability theory
  • Planar embeddings

Mathematics Subject Classification

  • 05C10
  • 05C63
  • 03D45