Skip to main content

Extended Formulations for Independence Polytopes of Regular Matroids

A Correction to this article was published on 16 December 2019

This article has been updated

Abstract

We show that the independence polytope of every regular matroid has an extended formulation of size quadratic in the size of its ground set. This generalizes a similar statement for (co-)graphic matroids, which is a simple consequence of Martin’s extended formulation for the spanning-tree polytope. In our construction, we make use of Seymour’s decomposition theorem for regular matroids. As a consequence, the extended formulations can be computed in polynomial time.

This is a preview of subscription content, access via your institution.

Change history

  • 16 December 2019

    We report a logical error in our article that turns out to be fatal for the main result. The error lies in Lemma 3 for the case of a 3-sum, that is

  • 16 December 2019

    We report a logical error in our article that turns out to be fatal for the main result. The error lies in Lemma 3 for the case of a 3-sum, that is

References

  1. 1.

    Conforti, M., Kaibel, V., Walter, M., Weltge, S.: Subgraph polytopes and independence polytopes of count matroids. Oper. Res. Lett. 43(5), 457–460 (2015)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schoenheim, J ( eds.) Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York (1970)

  3. 3.

    Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and extended formulations. Discrete Math. 313(1), 67–83 (2013). http://arxiv.org/abs/1111.0444

  4. 4.

    Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pp. 95–106. ACM, New York, USA (2012). doi:10.1145/2213977.2213988

  5. 5.

    Grande, F., Sanyal, R.: Theta rank, levelness, and matroid minors. arXiv:1408.1262 (2014)

  6. 6.

    Iwata, S., Kamiyama, N., Katoh, N., Kijima, S., Okamoto, Y.: Extended formulations for sparsity matroids. Mathematical Programming (2015). doi:10.1007/s10107-015-0936-8 (printed version to appear)

  7. 7.

    Kaibel, V., Weltge, S.: A short proof that the extension complexity of the correlation polytope grows exponentially. Discrete Comput. Geome. 53(2), 396–401 (2015). doi:10.1007/s00454-014-9655-9

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Corporation, New York (1976)

  9. 9.

    Martin, R.K.: Using separation algorithms to generate mixed integer model reformulations. Oper. Res. Lett. 10(3), 119–128 (1991). doi:10.1016/0167-6377(91)90028-N

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Oxley, J.G.: Matroid Theory, vol. 1997. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  11. 11.

    Rothvoss, T.: Some 0/1 polytopes need exponential size extended formulations. Math. Program. Ser. A 1–14 (2012). doi:10.1007/s10107-012-0574-3

  12. 12.

    Rothvoss, T.: The matching polytope has exponential extension complexity. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC ’14, pp. 263–272. ACM, New York, NY, USA (2014). doi:10.1145/2591796.2591834

  13. 13.

    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  14. 14.

    Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin (2003)

  15. 15.

    Seymour, P.D.: Decomposition of regular matroids. J. Comb. Theory Ser. B 28(3), 305–359 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Tutte, W.T.: An algorithm for determining whether a given binary matroid is graphic. Proc. Am. Math. Soc. 11(6), 905–917 (1960). http://www.jstor.org/stable/2034435

  17. 17.

    Williams, J.C.: A linear-size zero—one programming model for the minimum spanning tree problem in planar graphs. Networks 39(1), 53–60 (2002). doi:10.1002/net.10010

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Klaus Truemper for valuable comments on the decomposition of matroids.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Weltge.

Additional information

V. Kaibel and S. Weltge acknowledge support by Deutsche Forschungsgemeinschaft (KA 1616/4-1). J. Lee was partially supported by NSF grant CMMI–1160915 and ONR grant N00014-14-1-0315.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaibel, V., Lee, J., Walter, M. et al. Extended Formulations for Independence Polytopes of Regular Matroids. Graphs and Combinatorics 32, 1931–1944 (2016). https://doi.org/10.1007/s00373-016-1709-8

Download citation

Keywords

  • Extended formulation
  • Independence polytope
  • Regular matroid
  • Decomposition

Mathematics Subject Classification

  • 52Bxx