Skip to main content
Log in

The Local Metric Dimension of Strong Product Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A vertex \(v\in V(G)\) is said to distinguish two vertices \(x,y\in V(G)\) of a nontrivial connected graph G if the distance from v to x is different from the distance from v to y. A set \(S\subset V(G)\) is a local metric generator for G if every two adjacent vertices of G are distinguished by some vertex of S. A local metric generator with the minimum cardinality is called a local metric basis for G and its cardinality, the local metric dimension of G. It is known that the problem of computing the local metric dimension of a graph is NP-Complete. In this paper we study the problem of finding exact values or bounds for the local metric dimension of strong product of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bailey, R.F., Meagher, K.: On the metric dimension of grassmann graphs. Discrete Math. Theor. Comput. Sci. 13(4), 97–104 (2011). http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2049

  2. Barragán-Ramírez, G., Gómez, C.G., Rodríguez-Velázquez, J.A.: Closed formulae for the local metric dimension of corona product graphs. Electron. Notes Discrete Math. 46, 27–34 (2014). pii: S1571065314000067

  3. Blumenthal, L.M.: Theory and Applications of Distance Geometry, 2nd edn. Chelsea, New York (1970)

    MATH  Google Scholar 

  4. Brigham, R.C., Chartrand, G., Dutton, R.D., Zhang, P.: Resolving domination in graphs. Math. Bohem. 128(1), 25–36 (2003). http://mb.math.cas.cz/mb128-1/3.html

  5. Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of cartesian product of graphs. SIAM J. Discrete Math. 21(2), 423–441 (2007). doi:10.1137/050641867

    Article  MathSciNet  MATH  Google Scholar 

  6. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105(1–3), 99–113 (2000). doi:10.1016/S0166-218X(00)00198-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Chartrand, G., Saenpholphat, V., Zhang, P.: The independent resolving number of a graph. Math. Bohem. 128(4), 379–393 (2003). http://mb.math.cas.cz/mb128-4/4.html

  8. Estrada-Moreno, A., Rodríguez-Velázquez, J.A., Yero, I.G.: The \(k\)-metric dimension of a graph. Appl. Math. Inf. Sci. 9(6), 2829–2840 (2015). arXiv:1312.6840

  9. Feng, M., Wang, K.: On the metric dimension of bilinear forms graphs. Discrete Math. 312(6), 1266–1268 (2012). pii: S0012365X11005279

  10. Fernau, H., Rodríguez-Velázquez, J.A.: On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. arXiv:1309.2275 [math.CO], http://arxiv-web3.library.cornell.edu/abs/1309.2275

  11. Fernau, H., Rodríguez-Velázquez, J.A.: Notions of metric dimension of corona products: combinatorial and computational results. In: Computer Science—Theory and Applications, Lecture Notes in Computer Science, vol. 8476, pp. 153–166. Springer, Cham (2014)

  12. Guo, J., Wang, K., Li, F.: Metric dimension of some distance-regular graphs. J. Combin. Optim. 26, 190–197 (2013). doi:10.1007/s10878-012-9459-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Hammack, R., Imrich, W., Klavžar, S.: Handbook of product graphs, Discrete Mathematics and its Applications, 2nd edn. CRC Press (2011). http://www.crcpress.com/product/isbn/9781439813041

  14. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976). http://www.ams.org/mathscinet-getitem?mr=0457289

  15. Haynes, T.W., Henning, M.A., Howard, J.: Locating and total dominating sets in trees. Discrete Appl. Math. 154(8), 1293–1300 (2006). http://www.sciencedirect.com/science/article/pii/S0166218X06000035

  16. Johnson, M.: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. 3(2), 203–236 (1993). http://www.tandfonline.com/doi/abs/10.1080/10543409308835060

  17. Johnson, M.: Browsable structure-activity datasets. In: Carbó-Dorca, R., Mezey, P. (eds.) Advances in Molecular Similarity, chap. 8, pp. 153–170. JAI Press Inc, Stamford (1998). http://books.google.es/books?id=1vvMsHXd2AsC

  18. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70(3), 217–229 (1996). http://www.sciencedirect.com/science/article/pii/0166218X95001062

  19. Melter, R.A., Tomescu, I.: Metric bases in digital geometry. Comput. Vis. Graphics Image Process. 25(1), 113–121 (1984). pii: 0734189X84900513

  20. Okamoto, F., Phinezy, B., Zhang, P.: The local metric dimension of a graph. Math. Bohem. 135(3), 239–255 (2010). http://dml.cz/dmlcz/140702

  21. Ramírez-Cruz, Y., Oellermann, O.R., Rodríguez-Velázquez, J.A.: Simultaneous resolvability in graph families. Electron. Notes Discrete Math. 46(0), 241–248 (2014). http://www.sciencedirect.com/science/article/pii/S157106531400033X

  22. Rodríguez-Velázquez, J.A., Barragán-Ramírez, G.A., García Gómez, C.: On the local metric dimension of corona product graphs. Bull. Malays. Math. Sci. Soc. (2015, to appear). http://arxiv-web3.library.cornell.edu/abs/1308.6689

  23. Rodríguez-Velázquez, J.A., García Gómez, C., Barragán-Ramírez, G.A.: Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs. Int. J. Comput. Math. 92(4), 686–693 (2015). http://arxiv.org/abs/1402.0177

  24. Rodríguez-Velázquez, J.A., Kuziak, D., Yero, I.G., Sigarreta, J.M.: The metric dimension of strong product graphs. Carpathian J. Math. 31(2), 261–268 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Saenpholphat, V., Zhang, P.: Conditional resolvability in graphs: a survey. Int. J. Math. Math. Sci. 2004(38), 1997–2017 (2004). http://www.hindawi.com/journals/ijmms/2004/247096/abs/

  26. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004). doi:10.1287/moor.1030.0070

    Article  MathSciNet  MATH  Google Scholar 

  27. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  28. Yero, I.G., Kuziak, D., Rodríquez-Velázquez, J.A.: On the metric dimension of corona product graphs. Comput. Math. Appl. 61(9), 2793–2798 (2011). pii: S0898122111002094

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Rodríguez-Velázquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barragán-Ramírez, G.A., Rodríguez-Velázquez, J.A. The Local Metric Dimension of Strong Product Graphs. Graphs and Combinatorics 32, 1263–1278 (2016). https://doi.org/10.1007/s00373-015-1653-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1653-z

Keywords

Navigation