Skip to main content
Log in

Difference Systems of Sets with Size 2

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Difference systems of sets (DSS) are combinatorial structures introduced by Levenshtein in (Probl Peredachi Inform 7(3):215–222, 1971), which are a generalization of cyclic difference sets and arise in connection with code synchronization. In this paper, we consider a collection of pairs in a finite field of a prime order \(p=ef+1\) to be a regular DSS with parameters \((p,2,f,\rho )\). We give a lower bound on the parameter \(\rho \) using cyclotomic numbers for \(e=3\) and 4. In addition, we present a condition for which the collection of pairs forms an optimal DSS for \(e=4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Buratti, M., Pasotti, A.: Combinatorial designs and the theorem of Weil on multiplicative character sums. Finite Fields Appl. 15(3), 332–344 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chisaki, S., Miyamoto, N.: Difference systems of sets and a collection of \(3\)-subsets in a finite field of order \(p\). Finite Fields Appl. 34, 75–94 (2015)

    Article  MathSciNet  Google Scholar 

  3. Dickson, L.E.: Cyclotomy, higher congruences, and Waring’s Problem. Am. J. Math. 57(2), 391–424 (1935)

    Article  Google Scholar 

  4. Fuji-Hara, R., Momihara, K., Yamada, M.: Perfect difference systems of sets and Jacobi sums. Discret. Math. 309(12), 3954–3961 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fuji-Hara, R., Munemasa, A., Tonchev, V.D.: Hyperplane partitions and difference systems of sets. J. Comb. Theory Ser. A 113(8), 1689–1698 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fujiwara, Y., Tonchev, V.D.: High-rate self-synchronizing codes. IEEE Trans. Inf. Theory 59(4), 2328–2335 (2013)

    Article  MathSciNet  Google Scholar 

  7. Levenshtein, V.I.: One method of constructing quasi linear codes providing synchronization in the presence of errors. Probl. Peredachi Inform. 7(3), 215–222 (1971)

    Google Scholar 

  8. Levenshtein, V.I.: Combinatorial problems motivated by commafree codes. J. Comb. Des. 12, 184–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mutoh, Y., Tonchev, V.D.: Difference systems of sets and cyclotomy. Discret. Math. 308(14), 2959–2969 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Storer, T.: Cyclotomy and Difference Sets. Lectures in Advanced Mathematics. Markham publishing company, Chicago (1967)

    Google Scholar 

  11. Tonchev, V.D.: Difference systems of sets and code synchronization. Rend. Sem. Mat. Messina Ser. II 9, 217–226 (2003)

    MathSciNet  Google Scholar 

  12. Tonchev, V.D.: Partitions of difference sets and code synchronization. Finite Fields Appl. 11(3), 601–621 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tonchev, V.D., Wang, H.: An algorithm for optimal difference systems of sets. J. Comb. Optim. 14(2–3), 165–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referee for his/her careful reading of the original version of this paper, his/her helpful comments and valuable suggestions that much improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Chisaki.

Appendices

Appendix A

We define the cyclotomic matrix of order e, \((A_{ij})\) : \(0 \le i,j \le e-1\), to be the matrix whose ij-th entry is the integer \((i,j)_e\).

Let \(p=3f +1\) be an odd prime, where \(4p = x^2 + 27 y^2\) with \(x \equiv 1\) (mod 3). Then the cyclotomic numbers of order 3 are given by Table 5 and

$$\begin{aligned} \left\{ \begin{array}{lll} 9A_3 &{}=&{} p -8 +x, \\ 18B_3 &{}=&{} 2p -4 -x -9y, \\ 18C_3 &{}=&{} 2p -4-x +9y, \\ 9D_3 &{}=&{} p+1+x. \end{array} \right. \end{aligned}$$
Table 5 cyclotomic matrix of order 3

Appendix B

Let \(p = 4f+1\) be an odd prime satisfying \(p = x^2 + 4y^2\) and \(x \equiv 1\) (mod 4). When f is odd, the cyclotomic numbers of order 4 are given by Table 6 and

$$\begin{aligned} \left\{ \begin{array}{lll} 16A_4 &{}=&{} p -7 +2x, \\ 16B_4 &{}=&{} p +1+2x-8y, \\ 16C_4 &{}=&{} p+1-6x, \\ 16D_4 &{}=&{} p+1+2x+8y, \\ 16E_4 &{}=&{} p-3-2x. \end{array}\right. \end{aligned}$$
Table 6 cyclotomic matrix of order 4 when f is odd

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chisaki, S., Miyamoto, N. Difference Systems of Sets with Size 2. Graphs and Combinatorics 31, 1867–1881 (2015). https://doi.org/10.1007/s00373-015-1593-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1593-7

Keywords

Mathematics Subject Classification

Navigation