Skip to main content

Improved Upper Bounds on the Domination Number of Graphs With Minimum Degree at Least Five

Abstract

An algorithmic upper bound on the domination number \(\gamma \) of graphs in terms of the order n and the minimum degree \(\delta \) is proved. It is demonstrated that the bound improves best previous bounds for any \(5\le \delta \le 50\). In particular, for \(\delta =5\), Xing et al. (Graphs Comb. 22:127–143, 2006) proved that \(\gamma \le 5n/14 < 0.3572 n\). This bound is improved to 0.3440 n. For \(\delta =6\), Clark et al. (Congr. Numer. 132:99–123, 1998) established \(\gamma <0.3377 n\), while Biró et al. (Bull. Inst. Comb. Appl. 64:73–83, 2012) recently improved it to \(\gamma <0.3340 n\). Here the bound is further improved to \(\gamma < 0.3159n\). For \(\delta =7\), the best earlier bound 0.3088n is improved to \(\gamma < 0.2927n\).

This is a preview of subscription content, access via your institution.

Similar content being viewed by others

References

  1. Alon, N.: Transversal numbers of uniform hypergraphs. Graphs Comb. 6, 1–4 (1990)

    Article  MATH  Google Scholar 

  2. Arnautov, V.I.: Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices (Russian). Prikl. Mat. i Programmirovanie 11, 3–8 (1974)

    MathSciNet  Google Scholar 

  3. Biró, Cs, Czabarka, É., Dankelmann, P., Székely, L.: Remarks on the domination number of graphs. Bull. Inst. Comb. Appl. 64, 73–83 (2012)

    MATH  Google Scholar 

  4. Blank, M.M.: An estimate of the external stability number of a graph without suspended vertices (in Russian). Prikl. Mat. i Programmirovanie 10, 3–11 (1973)

    MathSciNet  Google Scholar 

  5. Brešar, B., Gologranc, T., Milanič, M., Rall, D.F., Rizzi, R.: Dominating sequences in graphs. Discret. Math. 336, 22–36 (2014)

    Article  MATH  Google Scholar 

  6. Brešar, B., Klavžar, S., Rall, D.F.: Domination game and an imagination strategy. SIAM J. Discret. Math. 24, 979–991 (2010)

    Article  MATH  Google Scholar 

  7. Bujtás, Cs.: Domination game on trees without leaves at distance four. In: Frank, A., Recski, A., Wiener, G. (eds.) Proceedings of the 8th Japanese–Hungarian Symposium on Discrete Mathematics and Its Applications. Veszprém, Hungary, pp. 73–78. 4–7 June 2013

  8. Bujtás, Cs.: On the game domination number of graphs with given minimum degree. Also: Electron. J. Combin., to appear (2014) arXiv:1406.7372 [math.CO]

  9. Clark, W.E., Shekhtman, B., Suen, S., Fisher, D.C.: Upper bounds for the domination number of a graph. Congr. Numer. 132, 99–123 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Clark, W.E., Dunning, L.A.: Tight upper bounds for the domination numbers of graphs with given order and minimum degree. Electron. J. Comb. 4(1), #R26 (1997)

  11. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  12. Imrich, W., Klavžar, S., Rall, D.F.: Topics in Graph Theory: Graphs and Their Cartesian Product. A K Peters, Wellesley (2008)

    Google Scholar 

  13. Kinnersley, W.B., West, D.B., Zamani, R.: Extremal problems for game domination number. SIAM J. Discret. Math. 27, 2090–2107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kostochka, A.V., Stodolsky, B.Y.: An upper bound on the domination number of \(n\)-vertex connected cubic graphs. Discret. Math. 309, 1142–1162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Král, D., Škoda, P., Volec, J.: Domination number of cubic graphs with large girth. J. Graph Theory 69, 131–142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Löwenstein, C., Rautenbach, D.: Domination in graphs of minimum degree at least two and large girth. Graphs Comb. 24, 37–46 (2008)

    Article  MATH  Google Scholar 

  17. Löwenstein, C., Rautenbach, D.: Pairs of disjoint dominating sets in connected cubic graphs. Graphs Comb. 28, 407–421 (2012)

    Article  MATH  Google Scholar 

  18. McCuaig, W., Shepherd, B.: Domination in graphs with minimum degree two. J. Graph Theory 13, 749–762 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ore, O.: Theory of Graphs. American Mathematical Society, Providence (1962)

    MATH  Google Scholar 

  20. Payan, C.: Sur le nombre d’absorption d’un graphe simple. Cahiers Centre Études Recherche Opér. 17, 307–317 (1975)

    MathSciNet  MATH  Google Scholar 

  21. Reed, B.: Paths, stars and the number three. Comb. Probab. Comput. 5, 277–295 (1996)

    Article  MATH  Google Scholar 

  22. Sohn, M.Y., Xudong, Y.: Domination in graphs of minimum degree four. J. Korean Math. Soc. 46, 759–773 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Volkmann, L.: Upper bounds on the domination number of a graph in terms of order and minimum degree. Ars Combin. 81, 3–22 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Xing, H.-M., Sun, L., Chen, X.-G.: Domination in graphs of minimum degree five. Graphs Comb. 22, 127–143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Research of the first author was supported by the European Union and Hungary through the projects TÁMOP-4.2.2.C-11/1/KONV-2012-0004 and the Campus Hungary B2/4H/12640. The second author was supported by the Ministry of Science of Slovenia under the grant P1-0297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandi Klavžar.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujtás, C., Klavžar, S. Improved Upper Bounds on the Domination Number of Graphs With Minimum Degree at Least Five. Graphs and Combinatorics 32, 511–519 (2016). https://doi.org/10.1007/s00373-015-1585-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1585-7

Keywords

Mathematics Subject Classfication