Skip to main content
Log in

Best Monotone Degree Conditions for Graph Properties: A Survey

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvátal’s well-known degree condition for hamiltonicity is best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (1992)

    MATH  Google Scholar 

  2. Anderson, I.: Perfect matchings of a graph. J. Combin. Theory Ser. B 10, 183–186 (1971)

    Article  MATH  Google Scholar 

  3. Bauer, D., Broersma, H.J., van den Heuvel, J., Kahl, N., Schmeichel, E.: Degree sequences and the existence of \(k\)-factors. Graphs Combin. 28, 149–166 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauer, D., Broersma, H.J., van den Heuvel, J., Kahl, N., Schmeichel, E.: Toughness and vertex degrees. J. Graph Theory 72, 209–219 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauer, D., Broersma, H.J., Veldman, H.J.: Not every 2-tough graph is hamiltonian. Discrete Appl. Math. 99, 317–321 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauer, D., Hakimi, S.L., Kahl, N., Schmeichel, E.: Sufficient degree conditions for \(k\)-edge-connectedness of a graph. Networks 54, 95–98 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bauer, D., Hakimi, S.L., Schmeichel, E.: Recognizing tough graphs is NP-hard. Discrete Appl. Math. 28, 191–195 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bauer, D., Kahl, N., Schmeichel, E., Woodall, D.R., Yatauro, M.: Improving theorems in a best monotone sense. Congr. Numer. 216, 87–95 (2013)

    MATH  MathSciNet  Google Scholar 

  9. Bauer, D., Kahl, N., Schmeichel, E., Woodall, D.R., Yatauro, M.: Toughness and binding number. Discrete Appl. Math. 165, 60–68 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bauer, D., Kahl, N., Schmeichel, E., Yatauro, M.: Best monotone degree conditions for binding number. Discrete Math. 311, 2037–2043 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bauer, D., Morgana, A., Schmeichel, E.F.: A simple proof of a theorem of Jung. Discrete Math. 79, 147–152 (1989/1990)

  12. Bauer, D., Nevo, A., Schmeichel, E.: Best monotone condition for 1-tough \(\Rightarrow \) 2-factor (in preparation)

  13. Bauer, D., Nevo, A., Schmeichel, E.: Best monotone condition for 2-factor \(\Rightarrow \) 1-tough (in preparation)

  14. Bauer, D., Nevo, A., Schmeichel, E.: Note on binding number, vertex degrees, and 1-factors (in preparation)

  15. Bauer, D., Nevo, A., Schmeichel, E.: Vertex arboricity and vertex degrees (in preparation)

  16. Bauer, D., Nevo, A., Schmeichel, E., Woodall, D.R., Yatauro, M.: Best monotone degree conditions for binding number and cycle structure. Discrete Appl. Math. (2014). doi:10.1016/j.dam.2013.12.014

  17. Bauer, D., Schmeichel, E.: Hamiltonian degree conditions which imply a graph is pancyclic. J. Combin. Theory Ser. B 48, 111–116 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bauer, D., Schmeichel, E.: Binding number, minimum degree, and cycle structure in graphs. J. Graph Theory 71, 219–228 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  20. Boesch, F.: The strongest monotone degree condition for \(n\)-connectedness of a graph. J. Combin. Theory Ser. B 16, 162–165 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bondy, J.A.: Properties of graphs with constraints on degrees. Studia Sci. Math. Hungar. 4, 473–475 (1969)

    MATH  MathSciNet  Google Scholar 

  22. Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Brooks, R.L.: On colouring the nodes of a network. Proc. Camb. Philos. Soc. 37, 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  24. Caro, Y.: New results on the independence number. Technical Report 05–79, Tel-Aviv University (1979)

  25. Chartrand, G., Harary, F.: Graphs with prescribed connectivities. In: Theory of Graphs, pp. 61–63. Academic Press, New York (1968)

  26. Chartrand, G., Kapoor, S.F., Kronk, H.V.: A sufficient condition for \(n\)-connectedness of graphs. Mathematika 15, 51–52 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chartrand, G., Kronk, H.V.: The point arboricity of planar graphs. J. Lond. Math. Soc. 44, 612–616 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  28. Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 5th edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  29. Chen, C.: Binding number and toughness for matching extension. Discrete Math. 146, 303–306 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Chvátal, V.: On Hamilton’s ideals. J. Combin. Theory Ser. B 12, 163–168 (1972)

    Article  MATH  Google Scholar 

  31. Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Math. 5, 215–228 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  32. Cunningham, W.H.: Computing the binding number of a graph. Discrete Appl. Math. 27, 283–285 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. (3) 2, 69–81 (1952)

  34. Egawa, Y., Enomoto, H.: Sufficient conditions for the existence of \(k\)-factors. In: Recent Studies in Graph Theory, pp. 96–105. Vishwa, Gulbarga (1989)

  35. Gallai, T.: On directed paths and circuits. In: Theory of Graphs, pp. 115–118. Academic Press, New York (1968)

  36. Hakimi, S.L., Schmeichel, E.F.: A note on the vertex arboricity of a graph. SIAM J. Discrete Math. 2, 64–67 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)

    Article  MathSciNet  Google Scholar 

  38. Hoàng, C.T.: Hamiltonian degree conditions for tough graphs. Discrete Math. 142, 121–139 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Jung, H.A.: On maximal circuits in finite graphs. Ann. Discrete Math. 3, 129–144 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kane, V.G., Mohanty, S.P.: Binding numbers, cycles and complete graphs. In: Combinatorics and Graph Theory. Lecture Notes in Mathematics, vol. 885, pp. 290–296. Springer, Berlin (1981)

  41. Katerinis, P., Woodall, D.R.: Binding numbers of graphs and the existence of \(k\)-factors. Q. J. Math. Oxford Ser. (2) 38, 221–228 (1987)

  42. Kriesell, M.: Degree sequences and edge connectivity. http://www.math.uni-hamburg.de/research/papers/hbm/hbm2007282 (2007) (preprint)

  43. Kronk, H.V.: A note on \(k\)-path hamiltonian graphs. J. Combin. Theory 7, 104–106 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  44. Las Vergnas, M.: Problèmes de Couplages et Problèmes Hamiltoniens en Théorie des Graphes. PhD Thesis, Université Paris VI—Pierre et Marie Curie (1972)

  45. Lesniak, L.: On \(n\)-hamiltonian graphs. Discrete Math. 14, 165–169 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  46. Lyle, J., Goddard, W.: The binding number of a graph and its cliques. Discrete Appl. Math. 157, 3336–3340 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. Murphy, O.: Lower bounds on the stability number of graphs computed in terms of degrees. Discrete Math. 90, 207–211 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  48. Nash-Williams, C.St.J.A.: Hamiltonian arcs and circuits. In: Recent Trends in Graph Theory. Lecture Notes in Mathematics, vol. 186, pp. 197–210. Springer, Berlin (1971)

  49. Pósa, L.: A theorem concerning Hamilton lines. Magyar Tud. Akad. Mat. Kutató Int. Közl. 7, 225–226 (1962)

  50. Rao, A.R.: The clique number of a graph with a given degree sequence. In: Proceedings of Symposium on Graph Theory. ISI Lecture Notes Series, vol. 4, pp. 251–267. (1979)

  51. Robertshaw, A.M., Woodall, D.R.: Triangles and neighbourhoods of independent sets in graphs. J. Combin. Theory Ser. B 80, 122–129 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  52. Shi, R.: The binding number of a graph and its pancyclism. Acta Math. Appl. Sinica (English Series) 3, 257–269 (1987)

    Article  MATH  Google Scholar 

  53. Szekeres, G., Wilf, H.S.: An inequality for the chromatic number of a graph. J. Combin. Theory 4, 1–3 (1968)

    Article  MathSciNet  Google Scholar 

  54. Tutte, W.T.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6, 347–352 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  55. Wei, V.K.: A lower bound on the stability number of a simple graph. Technical Memorandum TM 81–11217-9, Bell Laboratories (1981)

  56. Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput. J. 10, 85–86 (1967)

    Article  MATH  Google Scholar 

  57. West, D.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  58. Wilf, H.S.: The eigenvalues of a graph and its chromatic number. J. Lond. Math. Soc. 42, 330–332 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  59. Woodall, D.R.: The binding number of a graph and its Anderson number. J. Combin. Theory Ser. B 15, 225–255 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  60. Woodall, D.R.: A sufficient condition for hamiltonian circuits. J. Combin. Theory Ser. B 25, 184–186 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  61. Woodall, D.R.: \(k\)-factors and neighbourhoods of independent sets in graphs. J. Lond. Math. Soc. (2) 41, 385–392 (1990)

  62. Yin, J.-H., Guo, J.-Y.: Forcibly \(k\)-edge-connected graphic sequences (to appear, 2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Broersma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, D., Broersma, H.J., van den Heuvel, J. et al. Best Monotone Degree Conditions for Graph Properties: A Survey. Graphs and Combinatorics 31, 1–22 (2015). https://doi.org/10.1007/s00373-014-1465-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1465-6

Keywords

Navigation