Graphs and Combinatorics

, Volume 30, Issue 1, pp 47–69

Plane Graphs with Parity Constraints

  • Oswin Aichholzer
  • Thomas Hackl
  • Michael Hoffmann
  • Alexander Pilz
  • Günter Rote
  • Bettina Speckmann
  • Birgit Vogtenhuber
Original Paper

DOI: 10.1007/s00373-012-1247-y

Cite this article as:
Aichholzer, O., Hackl, T., Hoffmann, M. et al. Graphs and Combinatorics (2014) 30: 47. doi:10.1007/s00373-012-1247-y

Abstract

Let S be a set of n points in general position in the plane. Together with S we are given a set of parity constraints, that is, every point of S is labeled either even or odd. A graph G on S satisfies the parity constraint of a point \({p\in S}\) if the parity of the degree of p in G matches its label. In this paper, we study how well various classes of planar graphs can satisfy arbitrary parity constraints. Specifically, we show that we can always find a plane tree, a two-connected outerplanar graph, or a pointed pseudo-triangulation that satisfy all but at most three parity constraints. For triangulations we can satisfy about 2/3 of the parity constraints and we show that in the worst case there is a linear number of constraints that cannot be fulfilled. In addition, we prove that for a given simple polygon H with polygonal holes on S, it is NP-complete to decide whether there exists a triangulation of H that satisfies all parity constraints.

Keywords

Triangulation Vertex degree parity Pseudo-triangulation Geometric graph 

Mathematics Subject Classification (2010)

05C10 52C99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Japan 2012

Authors and Affiliations

  • Oswin Aichholzer
    • 1
  • Thomas Hackl
    • 1
  • Michael Hoffmann
    • 2
  • Alexander Pilz
    • 1
  • Günter Rote
    • 3
  • Bettina Speckmann
    • 4
  • Birgit Vogtenhuber
    • 1
  1. 1.Institute for Software TechnologyGraz University of TechnologyGrazAustria
  2. 2.Institute of Theoretical Computer ScienceETH ZürichZürichSwitzerland
  3. 3.Institut für InformatikFreie Universität BerlinBerlinGermany
  4. 4.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations