Skip to main content
Log in

Exact Mixing Times for Random Walks on Trees

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We characterize the extremal structures for certain random walks on trees. Let G = (V, E) be a tree with stationary distribution π. For a vertex \({i \in V}\), let H(π, i) and H(i, π) denote the expected lengths of optimal stopping rules from π to i and from i to π, respectively. We show that among all trees with |V| = n, the quantities \({{\rm min}_{i \in V} H(\pi, i), {\rm max}_{i \in V} H(\pi, i), {\rm max}_{i \in V} H(i, \pi)}\) and \({\sum_{i \in V} \pi_i H(i, \pi)}\) are all minimized uniquely by the star S n = K 1,n−1 and maximized uniquely by the path P n .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs. http://www.stat.berkeley.edu/~aldous/RWG/book.html. Accessed 9 Aug 2010

  2. Aldous D., Lovász L., Winkler P.: Mixing times for uniformly ergodic Markov chains. Stoch. Process. Appl. 71, 165–185 (1997)

    Article  MATH  Google Scholar 

  3. Beveridge A.: Centers for random walks on trees. SIAM J. Discrete Math. 23(1), 300–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beveridge A., Lovász L.: Exit frequency matrices for finite Markov chains. Combin. Probab. Comput. 19, 541–560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brightwell G., Winkler P.: Maximum hitting time for random walks on graphs. Random Struct. Algorithms 1(3), 263–276 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brightwell G., Winkler P.: Extremal cover time for random walks on trees. J. Graph Theory 14(5), 547–554 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppersmith D., Tetali P., Winkler P.: Collisions among random walks on a graph. SIAM J. Discrete Math. 6(3), 363–374 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feige U.: A tight lower bound on the cover time for random walks on graphs. Random Struct. Algorithms 6(4), 433–438 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Häggström O.: Finite Markov Chains and Algorithmic Applications. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  10. Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi, T. (eds.) Combinatorics, Paul Erdős is Eighty, vol. II, pp. 355–397. J. Bolyai Math. Soc., Budapest (1996)

  11. Lovász, L., Winkler, P.: Efficient stopping rules for Markov chains. In: Proc. 27th ACM Symp. Theory Comput., pp. 76–82 (1995)

  12. Lovász P., Winkler P.: Reversal of Markov chains and the forget time. Combin. Probab. Comput. 7, 189–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pitman J.W.: Occupation measures for Markov chains. Adv. Appl. Probab. 9, 69–86 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yaron, O.: Random walks on trees. Technical report, Hebrew University, Jerusalem (1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Beveridge.

Additional information

A. Beveridge supported in part by NSA Young Investigator Grant H98230-08-1-0064.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beveridge, A., Wang, M. Exact Mixing Times for Random Walks on Trees. Graphs and Combinatorics 29, 757–772 (2013). https://doi.org/10.1007/s00373-012-1175-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1175-x

Keywords

Navigation