Skip to main content
Log in

Maximum Hitting of a Set by Compressed Intersecting Families

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For a family \({\mathcal{A}}\) and a set Z, denote \({\{A \in \mathcal{A} \colon A \cap Z \neq \emptyset\}}\) by \({\mathcal{A}(Z)}\). For positive integers n and r, let \({\mathcal{S}_{n,r}}\) be the trivial compressed intersecting family \({\{A \in \big(\begin{subarray}{c}[n]\\r \end{subarray}\big) \colon 1 \in A\}}\), where \({[n] := \{1, \ldots, n\}}\) and \({\big(\begin{subarray}{c}[n]\\r \end{subarray}\big) := \{A \subset [n] \colon |A| = r\}}\). The following problem is considered: For rn/2, which sets \({Z \subseteq [n]}\) have the property that \({|\mathcal{A}(Z)| \leq |\mathcal{S}_{n,r}(Z)|}\) for any compressed intersecting family \({\mathcal{A}\subset \big(\begin{subarray}{c}[n]\\r \end{subarray}\big)}\)? (The answer for the case \({1 \in Z}\) is given by the Erdős–Ko–Rado Theorem.) We give a complete answer for the case |Z| ≥ r and a partial answer for the much harder case |Z| < r. This paper is motivated by the observation that certain interesting results in extremal set theory can be proved by answering the question above for particular sets Z. Using our result for the special case when Z is the r-segment \({\{2, \ldots, r+1\}}\), we obtain new short proofs of two well-known Hilton–Milner theorems. At the other extreme end, by establishing that \({|\mathcal{A}(Z)| \leq |\mathcal{S}_{n,r}(Z)|}\) when Z is a final segment, we provide a new short proof of a Holroyd–Talbot extension of the Erdős-Ko-Rado Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daykin D.E.: Erdős-Ko-Rado from Kruskal-Katona. J. Combin. Theory Ser. A 17, 254–255 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Deza M., Frankl P.: The Erdős–Ko–Rado theorem—22 years later. SIAM J. Algebraic Discret. Methods 4, 419–431 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Erdős P., Ko C., Rado R.: Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 12, 313–320 (1961)

    Article  Google Scholar 

  4. Erdős P., Rado R.: Intersection theorems for systems of sets. J. London Math. Soc. 35, 85–90 (1960)

    Article  MathSciNet  Google Scholar 

  5. Erdős P.L., Seress Á., Székely L.A.: Erdős-Ko-Rado and Hilton-Milner type theorems for intersecting chains in posets. Combinatorica 20, 27–45 (2000)

    Article  MathSciNet  Google Scholar 

  6. Frankl P.: On intersecting families of finite sets. J. Combin. Theory Ser. A 24, 146–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frankl P.: The shifting technique in extremal set theory. In: Whitehead, C. (ed). Combinatorial Surveys, pp. 81–110. Cambridge University Press, London (1987)

    Google Scholar 

  8. Frankl P., Furedi Z.: Non-trivial intersecting families. J. Combin. Theory Ser. A 41, 150–153 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frankl P., Tokushige N.: Some best possible inequalities concerning cross-intersecting families. J. Combin. Theory Ser. A 61, 87–97 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hajnal A., Rothschild B.: A generalization of the Erdős–Ko–Rado theorem on finite set systems. J. Combin. Theory Ser. A 15, 359–362 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hilton A.J.W., Milner E.C.: Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 18, 369–384 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holroyd F.C., Talbot J.: Graphs with the Erdős-Ko-Rado property. Discret. Math. 293, 165–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Katona G.O.H.: A simple proof of the Erdős–Chao Ko–Rado theorem. J. Combin. Theory Ser. B 13, 183–184 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Katona, G.O.H.: A theorem of finite sets. In: Theory of Graphs, Proc. Colloq. Tihany, Akadémiai Kiadó, pp. 187–207. Academic Press, New York (1968)

  15. Kruskal J.B.: The number of simplices in a complex. In: Bellman, R. (ed). Mathematical optimization techniques, pp. 251–278. University of California Press, Berkeley, California (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Borg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borg, P. Maximum Hitting of a Set by Compressed Intersecting Families. Graphs and Combinatorics 27, 785–797 (2011). https://doi.org/10.1007/s00373-010-1001-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-1001-2

Keywords

Mathematics Subject Classification (2000)

Navigation