Skip to main content

On the Roman Bondage Number of Planar Graphs

Abstract

A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value \({f (V(G)) = \sum_{u\in V(G)} f (u)}\). The Roman domination number, γ R (G), of G is the minimum weight of a Roman dominating function on G. The Roman bondage number b R (G) of a graph G with maximum degree at least two is the minimum cardinality of all sets \({E^{\prime} \subseteq E(G)}\) for which γ R (GE′) > γ R (G). In this paper we present different bounds on the Roman bondage number of planar graphs.

This is a preview of subscription content, access via your institution.

References

  1. Bauer D., Harary F., Nieminen J., Suffel C.L.: Domination alteration sets in graphs. Discrete Math. 47, 153–161 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carlson K., Develin M.: On the bondage number of planar and directed graphs. Discrete Math. 306, 820–826 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cockayne E.J., Dreyer P.M. Jr, Hedetniemi S.M., Hedetniemi S.T.: Roman domination in graphs. Discrete Math. 278, 11–22 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dunbar J.E., Haynes T.W., Teschner U., Volkmann L.: Bondage, insensitivity, and reinforcement. In: Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds) Domination in Graphs: Advanced Topics, pp. 471–489. Marcel Dekker, New York (1998)

    Google Scholar 

  5. Fink J.F., Jacobson M.S., Kinch L.F., Roberts J.: The bondage number of a graph. Discrete Math. 86, 47–57 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fischermann M., Rautenbach D., Volkmann L.: Remarks on the bondage number of planar grahs. Discrete Math. 260, 57–67 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hartnell B.L., Rall D.F.: Bounds on the bondage number of a graph. Discrete Math. 128, 173–177 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Haynes T.W., Hedetniemi S.T., Slater P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  9. Jafari Rad, N., Volkmann, L.: Roman bondage in graphs. Submitted for publication (2009)

  10. Kang L., Yuan J.: Bondage number of planar graphs. Discrete Math. 222, 191–198 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. ReVelle C.S., Rosing K.E.: Defendens imperium romanum: a classical problem in military strategy. Am. Math. Mon. 107, 585–594 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Stewart I.: Defend the Roman Empire!. Sci. Am. 281, 136–139 (1999)

    Article  Google Scholar 

  13. Teschner U.: New results about the bondage number of a graph. Discrete Math. 171, 249–259 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Jafari Rad.

Additional information

The research of first author was in part supported by a grant from IPM (No. 89050040).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jafari Rad, N., Volkmann, L. On the Roman Bondage Number of Planar Graphs. Graphs and Combinatorics 27, 531–538 (2011). https://doi.org/10.1007/s00373-010-0978-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0978-x

  • Domination
  • Roman domination
  • Roman bondage number
  • Planar graphs