Abstract
A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value \({f (V(G)) = \sum_{u\in V(G)} f (u)}\). The Roman domination number, γ R (G), of G is the minimum weight of a Roman dominating function on G. The Roman bondage number b R (G) of a graph G with maximum degree at least two is the minimum cardinality of all sets \({E^{\prime} \subseteq E(G)}\) for which γ R (G − E′) > γ R (G). In this paper we present different bounds on the Roman bondage number of planar graphs.
This is a preview of subscription content, access via your institution.
References
Bauer D., Harary F., Nieminen J., Suffel C.L.: Domination alteration sets in graphs. Discrete Math. 47, 153–161 (1983)
Carlson K., Develin M.: On the bondage number of planar and directed graphs. Discrete Math. 306, 820–826 (2006)
Cockayne E.J., Dreyer P.M. Jr, Hedetniemi S.M., Hedetniemi S.T.: Roman domination in graphs. Discrete Math. 278, 11–22 (2004)
Dunbar J.E., Haynes T.W., Teschner U., Volkmann L.: Bondage, insensitivity, and reinforcement. In: Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds) Domination in Graphs: Advanced Topics, pp. 471–489. Marcel Dekker, New York (1998)
Fink J.F., Jacobson M.S., Kinch L.F., Roberts J.: The bondage number of a graph. Discrete Math. 86, 47–57 (1990)
Fischermann M., Rautenbach D., Volkmann L.: Remarks on the bondage number of planar grahs. Discrete Math. 260, 57–67 (2003)
Hartnell B.L., Rall D.F.: Bounds on the bondage number of a graph. Discrete Math. 128, 173–177 (1994)
Haynes T.W., Hedetniemi S.T., Slater P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)
Jafari Rad, N., Volkmann, L.: Roman bondage in graphs. Submitted for publication (2009)
Kang L., Yuan J.: Bondage number of planar graphs. Discrete Math. 222, 191–198 (2000)
ReVelle C.S., Rosing K.E.: Defendens imperium romanum: a classical problem in military strategy. Am. Math. Mon. 107, 585–594 (2000)
Stewart I.: Defend the Roman Empire!. Sci. Am. 281, 136–139 (1999)
Teschner U.: New results about the bondage number of a graph. Discrete Math. 171, 249–259 (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research of first author was in part supported by a grant from IPM (No. 89050040).
Rights and permissions
About this article
Cite this article
Jafari Rad, N., Volkmann, L. On the Roman Bondage Number of Planar Graphs. Graphs and Combinatorics 27, 531–538 (2011). https://doi.org/10.1007/s00373-010-0978-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-010-0978-x
- Domination
- Roman domination
- Roman bondage number
- Planar graphs