Advertisement

Graphs and Combinatorics

, Volume 27, Issue 1, pp 1–26 | Cite as

Spanning Trees: A Survey

  • Kenta Ozeki
  • Tomoki YamashitaEmail author
Survey

Abstract

In this paper, we give a survey of spanning trees. We mainly deal with spanning trees having some particular properties concerning a hamiltonian properties, for example, spanning trees with bounded degree, with bounded number of leaves, or with bounded number of branch vertices. Moreover, we also study spanning trees with some other properties, motivated from optimization aspects or application for some problems.

Keywords

Spanning trees k-Trees k-Ended trees Branch vertices k-Leaf connected 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon N.: Transversal numbers of uniform hypergraphs. Graphs Combin. 6, 1–4 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon N., Fomin F.V., Gutin G., Krivelevich M., Saurabh S.: Parameterized algorithms for directed maximum leaf problems. Lect. Notes Comput. Sci. 4596, 352–362 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alon N., Fomin F.V., Gutin G., Krivelevich M., Saurabh S.: Better algorithms and bounds for directed maximum leaf problems. Lect. Notes Comput. Sci. 4855, 316–327 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alon, N., Wormald, N.: High degree graphs contain large-star factors. arXiv:math.CO.0810.2053v1Google Scholar
  5. 5.
    Archedeacon D., Hartsfield N., Little C.H.C.: Nonhamiltonian triangulations with large connectivity and representativity. J. Combin. Theory Ser. B 68, 45–55 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Atajan T., Yong X., Inaba H.: Further analysis of the number of spanning trees in circulant graphs. Discrete Math. 306, 2817–2827 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Aung M., Kyaw A.: Maximal trees with bounded maximum degree in a graph. Graphs Combin. 14, 209–221 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Austin T.I.: The enumeration of point labelled chromatic graphs and trees. Can. J. Math. 12, 535–545 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Babu C.S., Diwan A.A.: Degree conditions for forests in graphs. Discrete Math. 301, 228–231 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barnette D.W.: Trees in polyhedral graphs. Can. J. Math 18, 731–736 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barnette D.W.: 3-trees in polyhedral maps. Isr. J. Math 79, 251–256 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bauer D., Broersma H., Schmeichel E.: Toughness in graphs—a survey. Graphs Combin. 22, 1–35 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bauer D., Broersma H., Veldman H.J.: Not every 2-tough graph is hamiltonian. Discrete Appl. Math. 99, 317–321 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bauer D., Fan G., Veldman H.J.: Hamiltonian properties of graphs with large neighborhood unions. Discrete Math. 96, 33–49 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bermond J.-C., Fraigniaud P.: Broadcasting and gossiping in deBruijn networks. SIAM J. Comput. 23, 212–225 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Boesch F., Li X., SuLel C.: On the existence of uniformly most reliable networks. Networks 21, 181–194 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Böhme T., Broersma H.J., Göbel F., Kostochka A.V., Stiebitz M.: Spanning trees with pairwise nonadjacent endvertices. Discrete Math. 170, 219–222 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bondy A., Chvátal V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bonsma P.: Spanning trees with many leaves in graphs with minimum degree three. SIAM J. Discrete Math. 22(3), 920–937 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bonsma P., Zickfeld F.: Spanning trees with many leaves in graphs without diamonds and blossoms. Lect. Notes Comput. Sci. 4957, 531–543 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bonsma P., Zickfeld F.: A 3/2-approximation algorithm for finding spanning trees with many leaves in cubic graphs. Lect. Notes Comput. Sci. 5344, 66–77 (2008)CrossRefGoogle Scholar
  22. 22.
    Brandt S.: Subtrees and subforests of graphs. J. Combin. Theory Ser. B 61, 63–70 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bridgland M.F., Jamison R.E., Zito J.S.: The spanning trees forced by the path and the star. J. Graph Theory 23, 421–441 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Broersma H., Koppius O., Tuinstra H., Huck A., Kloks T., Kratsch D., Müller H.: Degree- preserving trees. Networks 35, 26–39 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Broersma H.J., Li X.: The connectivity of the leaf-exchange spanning tree graph of a graph. Ars Combin. 43, 225–231 (1996)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Broersma H., Tuinstra H.: Independence trees and Hamilton cycles. J. Graph Theory 29, 227–237 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cai L.: On spanning 2-trees in a graph. Discrete Appl. Math. 74, 203–216 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Cai L.: The complexity of the locally connected spanning tree problem. Discrete Appl. Math. 131, 63–75 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Caro Y., Krasikov I., Roditty Y.: On the largest tree of given maximum degree in a connected graph. J. Graph Theory 15, 7–13 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Caro Y., West D.B., Yuster R.: Connected domination and spanning trees with many leaves. SIAM J. Discrete Math. 13, 202–211 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Catlin, P.A.: Edge-connectivity and edge-disjoint spanning trees (2001, preprint). http://www.math.wvu.edu/~hjlai/Pdf/Catlin_Pdf/Catlin49a.pdf
  32. 32.
    Catlin P.A., Grossman J.W., Hobbs A.M., Lai H.J.: Fractional arboricity, strength, and principal partitions in graphs and matroids. Discrete Appl. Math. 40, 285–302 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Catlin P.A., Lai H.J., Shao Y.: Edge-connectivity and edge-disjoint spanning trees. Discrete Math. 309, 1033–1040 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Cayley A.: A theorem on trees. Q. J. Math. 23, 376–378 (1889)Google Scholar
  35. 35.
    Chen, G., Egawa, Y., Kawarabayashi, K., Mohar, B., Ota, K.: Toughness of K a,t-minor-free graphs (2010, submitted)Google Scholar
  36. 36.
    Chen C.C., Koh K.M., Peng Y.H.: On the higher-order edge toughness of a graph. Discrete Math. 111, 113–123 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Chen Z.H., Lai H.J.: The higher-order edge-toughness of a graph and truncated uniformly dense matroids. J. Combin. Math. Combin. Comput. 22, 157–160 (1996)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Chen X., Lin Q., Zhang F.: The number of spanning trees in odd valent circulant graphs. Discrete Math. 282, 69–79 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Cheng C.: Maximizing the total number of spanning trees in a graph: two related problems in graph theory and optimization design theory. J. Combin. Theory Ser. B 31, 240–248 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Cheriyan J., Maheshwari S.: Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. J. Algorithms 9, 507–537 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Choi S., Guan P.: A spanning tree of the 2m-dimensional hypercube with maximum number of degree-preserving vertices. Discrete Math. 117, 275–277 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Chvàtal V.: Tough graphs and hamiltonian circuits. Discerete Math. 5, 215–228 (1973)CrossRefzbMATHGoogle Scholar
  43. 43.
    Chvàtal V.: Tree—complete graph Ramsey numbers. J. Graph Theory 1, 93 (1977)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Chvátal V., Erdős P.: A note on hamiltonian circuits. Discrete Math. 2, 111–113 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Correa J.R., Fernandes C.G., Matamala M., Wakabayashi Y.: A 5/3-approximation for finding spanning trees with many leaves in cubic graphs. Lect. Notes Comput. Sci. 4927, 184–192 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Cummins R.L.: Hamilton circuits in tree graphs. IEEE Trans. Circuit Theory 13, 82–90 (1966)MathSciNetGoogle Scholar
  47. 47.
    Cunningham W.H.: Optimal attack and reinforcement of a network. J. Assoc. Comput. Mach. 32, 549–561 (1985)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Curran S., Lee O., Yu X.: Chain decompositions of 4-connected graphs. SIAM J. Discrete Math. 19, 848–880 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Curran S., Lee O., Yu X.: Finding four independent trees. SIAM J. Comput. 35, 1023–1058 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Curran S., Lee O., Yu X.: Nonseparating planar chains in 4-connected graphs. SIAM J. Discrete Math. 19, 399–419 (2006)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Cvetkovič, D., Doob, M., Sachs, H.: Spectra of graphs. In: Mathematics, vol. 87. Academic press, New York (1980)Google Scholar
  52. 52.
    Czygrinow A., Fan G., Hurlbert G., Kierstead H.A., Trotter W.T.: Spanning trees of bounded degree. Electron. J. Combin. 8, R33 (2001)MathSciNetGoogle Scholar
  53. 53.
    Dahlhaus E., Dankelmann P., Goddard W., Swart H.C.: MAD trees and distance-hereditary graphs. Dicrete Appl. Math. 131, 151–167 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Dahlhaus E., Dankelmann P., Ravi R.: A linear-time algorithm to compute a MAD tree of an interval graph. Inform. Process. Lett. 89, 255–259 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Dankelmann P., Entringer R.: Average distance, minimum degree, and spanning trees. J. Graph Theory 33, 1–13 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Damaschke P.: Degree-preserving spanning trees in small-degree graphs. Discrete Math. 222, 51–60 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Das K.C.: A sharp upper bounds for the number of spanning trees of a graph. Graphs Combin. 23, 625–632 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Ding G., Johnson T., Seymour P.: Spanning trees with many leaves. J. Graph Theory 37, 189–197 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Egawa Y., Matsuda H., Yamashita T., Yoshimoto K.: On a spanning tree with specified leaves. Graphs Combin. 24, 13–18 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Egawa, Y., Ozeki, K.: A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees (2010, submitted)Google Scholar
  61. 61.
    Eǧecioǧlu O., Remmel J.B.: Bijections for Cayley trees, spanning trees and their q-analogues. J. Combin. Theory Ser. A 42, 15–30 (1986)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Eǧecioǧlu O., Remmel J.B.: A bijection for spanning trees of complete multipartite graphs. Congr. Numer. 100, 225–243 (1994)MathSciNetGoogle Scholar
  63. 63.
    Ellingham M.N.: Spanning paths, cycles and walks for graphs on surfaces. Congr. Numer. 115, 55–90 (1996)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Ellingham M.N., Gao Z.: Spanning trees in locally planar triangulations. J. Combin Theory Ser. B 61, 178–198 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Ellingham M.N., Nam Y., Voss H.-J.: Connected (g, f)-factor. J. Graph Theory 39, 62–75 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Ellingham M.N., Zha X.: Toughness, trees, and walks. J. Graph Theory 33, 125–137 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Enomoto, H.: private communicationGoogle Scholar
  68. 68.
    Enomoto, H., Ohnishi, Y., Ota, K.: Spanning trees with bounded total excess. Ars Combin (2010, to appear)Google Scholar
  69. 69.
    Enomoto, H., Ozeki, K.: The independence number condition for the existence of a spanning f-tree. J. Graph Thoery (2010, to appear)Google Scholar
  70. 70.
    Entringer R.C.: Distance in graphs: trees. J. Combin. Math. Combin. Comput. 24, 65–84 (1997)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Entringer R.C., Kleitman D.J., Székely L.A.: A note on spanning trees with minimum average distance. Bull. Inst. Combim. Appl. 17, 71–78 (1996)zbMATHGoogle Scholar
  72. 72.
    Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications, pp. 29–36. Academic Press, New York (1964)Google Scholar
  73. 73.
    Erdős P., Faudree R.J., Rousseau C.C., Schelp R.H.: Graphs with certain families of spanning trees. J. Combin. Theory Ser. B 32, 162–170 (1982)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Erdős P., Gallai T.: On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung. 10, 337–356 (1959)CrossRefGoogle Scholar
  75. 75.
    Estivill-Castro V., Noy M., Urrutia J.: On the chromatic number of tree graphs. Discrete Math. 223, 363–366 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Fan G., Sun L.: The Erdős-Sós conjecture for spiders. Discrete Math. 307, 3055–3062 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Faudree R.J., Rousseau C.C., Schelp R.H., Schuster S.: Panarboreal graphs. Isr. J. Math. 35, 177–185 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Feng L., Yu G., Jiang Z., Ren L.: Sharp upper bounds for the number of spanning trees of a graph. Appl. Anal. Discrete Math. 2, 255–259 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Fischetti M., Lancia G., Serafini P.: Exact algorithms for minimum routing cost trees. Networks 39, 161–173 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Flandrin E., Jung H.A., Li H.: Hamiltonism, degree sum and neighborhood intersections. Discrete Math. 90, 41–52 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Flandrin E., Kaiser T., Kužel R., Li H., Ryjáček Z.: Neighborhood unions and extremal spanning trees. Discrete Math. 308, 2343–2350 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Frank A., Gyàrfàs A.: How to orient the edges of a graph?. Colloq. Math. Soc. Jànos Bolyai 18, 353–364 (1976)Google Scholar
  83. 83.
    Frank A., Király T., Kriesell M.: On decomposing a hypergraph into k connected sub-hypergraphs. Discrete Appl. Math. 131, 373–383 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Fujisawa, J., Matsumura, H., Yamashita, T.: Degree bounded spanning trees. Graphs Combin. (2010, to appear)Google Scholar
  85. 85.
    Fujisawa, J., Saito, A., Schiermeyer, I.: Closure for spanning trees and distant area (2010, submitted)Google Scholar
  86. 86.
    Fusco E.G., Monti A.: Spanning trees with many leaves in regular bipartite graphs. Lect. Notes Comput. Sci. 4835, 904–914 (2007)MathSciNetCrossRefGoogle Scholar
  87. 87.
    Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York (1979)Google Scholar
  88. 88.
    Gargano L., Hammar M.: There are spanning spiders in dense graphs (and we know how to find them). Lect. Notes Comput. Sci. 2719, 802–816 (2003)MathSciNetCrossRefGoogle Scholar
  89. 89.
    Gargano L., Hammar M., Hell P., Stacho L., Vaccaro U.: Spanning spiders and light-splitting switches. Discrete Math. 285, 83–95 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Gargano L., Hell P., Stacho L., Vaccaro U.: Spanning trees with bounded number of branch vertices. Lect. Notes Comput. Sci. 2380, 355–365 (2002)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Gilbert B., Myrvold W.: Maximizing spanning trees in almost complete graphs. Networks 30, 23–30 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Griggs J.R., Kleitman D.J., Shastri A.: Spanning trees with many leaves in cubic graphs. J. Graph Theory 13, 669–695 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Griggs J.R., Wu M.: Spanning trees in graphs of minimum degree 4 or 5. Discrete Math. 104, 167–183 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Grimmett G.R.: An upper bound for the number of spanning trees of a graph. Discrete Math. 16, 323–324 (1976)MathSciNetCrossRefGoogle Scholar
  95. 95.
    Grone R., Merris R.: A bound for the complexity of a simple graph. Discrete Math. 69, 97–99 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  96. 96.
    Gurgel M.A., Wakabayashi Y.: On k-leaf-connected graphs. J. Combin. Theory Ser. B 41, 1–16 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  97. 97.
    Harary F., Mokken R.J., Plantholt M.J.: Interpolation theorem for diameters of spanning trees. IEEE Trans. Circuits Syst. 30, 429–432 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  98. 98.
    Hasunuma T., Nagamochi H.: Independent spanning trees with small depths in iterated line graphs. Discrete Appl. Math. 110, 189–211 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  99. 99.
    Heinrich K., Liu G.: A lower bound on the number of spanning trees with k end-vertices. J. Graph Theory 12, 95–100 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  100. 100.
    Huck A.: Independent trees in graphs. Graphs Combin. 10, 29–45 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  101. 101.
    Huck A.: Disproof of a conjecture about independent spanning trees in k-connected directed graphs. J. Graph Theory 20, 235–239 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  102. 101.
    Huck A.: Independent branching in acyclic digraphs. Discrete Math. 199, 245–249 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    Huck A.: Independent trees in planar graphs independent trees. Graphs Combin. 15, 29–77 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  104. 104.
    Itai A., Rodeh M.: The multi-tree approach to reliability in distributed networks. Inform. Comput. 79, 43–59 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  105. 105.
    Jackson, B.: Hamilton cycles in 7-connected line graphs (2010, preprint)Google Scholar
  106. 106.
    Jackson B., Wormald N.C.: k-walks of graphs. Aust. J. Combin. 2, 135–146 (1990)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Jaeger F.: Flows and generalized coloring theorems in graphs. J. Combin. Theory Ser. B 26, 205–216 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  108. 108.
    Jain, K., Mahdian, M., Salavatipour, M.R.: Packing Steiner trees. In: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms (SODA), pp. 266–274 (2003)Google Scholar
  109. 109.
    Johnson D.S., Lenstra J.K., Rinnooy-Kan A.H.: The complexity of the network design problem. Networks 8, 279–285 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  110. 110.
    Jordán T.: On the existence of k edge-disjoint 2-connected spanning subgraphs. J. Combin. Theory Ser. B 95, 257–262 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  111. 111.
    Kaneko A.: Spanning trees with constraints on the leaf degree. Discrete Appl. Math. 115, 73–76 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  112. 112.
    Kaneko A., Kano M., Suzuki K.: Spanning trees with leaf distance at least four. J. Graph Theory 55, 83–90 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  113. 113.
    Kaneko A., Yoshimoto K.: The connectivities of leaf graphs of 2-connected graphs. J. Combin. Theory Ser. B 76, 155–169 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  114. 114.
    Kaneko A., Yoshimoto K.: On spanning trees with restricted degrees. Inform. Process. Lett. 73, 163–165 (2000)MathSciNetCrossRefGoogle Scholar
  115. 115.
    Kano, M., Kishimoto, H.: Spanning k-tree of n-connected graphs. Graphs Combin. (2010, to appear)Google Scholar
  116. 116.
    Kano, M., Kyaw, A., Matsuda, H., Ozeki, K., Saito, A., Yamashita, T.: Spanning trees with a bounded number of leaves in a claw-free graph (2010, submitted)Google Scholar
  117. 117.
    Kawarabayashi K., Nakamoto A., Ota K.: Subgraphs of graphs on surfaces with high representativity. J. Combin. Theory Ser. B 89, 207–229 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  118. 118.
    Kelmans A.: On graphs with the maximum number of spanning trees. Random Struct. Algorithms 9, 177–192 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  119. 119.
    Khuller B., Schieber B.: On independent spanning trees. Inform. Process. Lett. 42, 321–323 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  120. 120.
    Kirchhoff, G.: Über dieAuflösung derGleichungen, aufwelcheman bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)CrossRefGoogle Scholar
  121. 121.
    Kleitman D.J., West D.B.: Spanning trees with many leaves. SIAM J. Discrete Math. 4, 99–106 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  122. 122.
    Kouider M., Vestergaard P.D.: Connected factors in graphs—a survey. Graphs Combin. 21, 1–26 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  123. 123.
    Kriesell M.: Edge-disjoint trees containing some given vertices in a graph. J. Combin. Theory Ser. B 88, 53–65 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  124. 124.
    Kriesell M.: Edge disjoint Steiner trees in graphs without large bridges. J. Graph Theory 62, 188–198 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  125. 125.
    Kyaw A.: A sufficient condition for a graph to have a k-tree. Graphs Combin. 17, 113–121 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  126. 126.
    Kyaw A.: Spanning trees with at most 3 leaves in K 1,4-free graphs. Discrete Math. 309, 6146–6148 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  127. 127.
    Kyaw, A.: private communicationGoogle Scholar
  128. 128.
    Lau L.C.: An approximate max-Steiner-tree-packing min-Steiner-cut theorem. Combinatorica 27, 71–90 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  129. 129.
    Lemke, P.: The maximum leaf spanning tree problem for cubic graphs is NP-complete. IMA Preprint Series, # 428 (1988)Google Scholar
  130. 130.
    Lewinter M.: Interpolation theorem for the number of degree-preserving vertices of spanning trees. IEEE Trans. Circuits Syst. 34, 205 (1987)MathSciNetCrossRefGoogle Scholar
  131. 131.
    Lewis R.P.: The number of spanning trees of a complete multipartite graph. Discrete Math. 197/198, 537–541 (1999)Google Scholar
  132. 132.
    Li X., Neumann-Lara V., Rivera-Campo E.: On a tree graph defined by a set of cycles. Discrete Math. 271, 303–310 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  133. 133.
    Li P.C., Toulouse M.: Variations of the maximum leaf spanning tree problem for bipartite graphs. Inform. Process. Lett. 97, 129–132 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  134. 134.
    Lin C.C., Chang G.J., Chen G.H.: Locally connected spanning trees in strongly chordal graphs and proper circular graphs. Discrete Math. 307, 208–215 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  135. 135.
    Liu G.Z.: On connectivities of tree graphs. J. Graph Theory 12, 453–459 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  136. 136.
    Loryś K., Zwoźniak G.: Approximation algorithm for the maximum leaf spanning tree problem for cubic graphs. Lect. Notes Comput. Sci. 2461, 686–697 (2002)CrossRefGoogle Scholar
  137. 137.
    Lu, H.I., Ravi, R.: The power of local optimization: approximation algorithms for maximum-leaf spanning tree. In: Proceedings of the Thirtieth Annual Allerton Conference on Communication, Control and Computing, pp. 533–542 (1992)Google Scholar
  138. 138.
    Lu H.I., Ravi R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29, 132–141 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  139. 139.
    Matsuda H., Matsumura H.: On a k-tree containing specified leaves in a graph. Graphs Combin. 22, 371–381 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  140. 140.
    Matsuda, H., Ozeki, K., Yamashita, T.: Spanning trees with a bounded number of branch vertices in a claw-free graph (2010, submitted)Google Scholar
  141. 141.
    Matthews M.M., Sumner D.P.: Hamiltonian results in K 1,3-free graphs. J. Graph Theory 8, 139–146 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  142. 142.
    Merris R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197/198, 143–176 (1994)MathSciNetCrossRefGoogle Scholar
  143. 143.
    Miura K., Takahashi D., Nakano S., Nishizeki T.: A linear-time algorithm to find four independent spanning trees in four-connected planar graphs. Graph Theor. Concepts Comput. Sci. 1517, 310–323 (1998)MathSciNetCrossRefGoogle Scholar
  144. 144.
    Moon, J.W.: Counting Labelled Trees, Canadian Mathematical Monographs, No. 1, Canadian Mathematical Congress, Montreal (1970)Google Scholar
  145. 145.
    Nakamoto A., Oda Y., Ota K.: 3-trees with few vertices of degree 3 in circuit graphs. Discrete Math. 309, 666–672 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  146. 146.
    Nash-Williams C.St.J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  147. 147.
    Neumann-Lara V., Rivera-Campo E.: Spanning trees with bounded degrees. Combinatorica 11, 55–61 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  148. 148.
    Ohnishi, Y., Ota, K.: Connected factors with bounded total excess (2010, preprint)Google Scholar
  149. 149.
    Ore O.: Note on Hamilton circuits. Am. Math. Mon. 67, 55 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  150. 150.
    Ore O.: Hamilton connected graphs. J. Math. Pures Appl. 42, 21–27 (1963)MathSciNetzbMATHGoogle Scholar
  151. 151.
    Ota, K., Ozeki, K.: Spanning trees in 3-connected K 3,t-minor-free graphs (2010, submitted)Google Scholar
  152. 152.
    Ozeki, K.: Toughness condition for a spanning k-tree with bounded total excess (2010, submitted)Google Scholar
  153. 153.
    Ozeki, K.: Spanning trees in 3-connected graphs on surfaces (2010, preprint)Google Scholar
  154. 154.
    Ozeki K., Yamashita T.: A spanning tree with high degree vertices. Graphs Combin. 26, 591–596 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  155. 155.
    Palmer E.M.: On the spanning tree packing number of a graph: a survey. Discrete Math. 230, 13–21 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  156. 156.
    Petingi L., Boesch F., SuLel C.: On the characterization of graphs with maximum number of spanning trees. Discrete Math. 179, 155–166 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  157. 157.
    Petingi L., Rodriguez J.: Bounds on the maximum number of edge-disjoint Steiner trees of a graph. Congr. Numer. 145, 43–52 (2000)MathSciNetzbMATHGoogle Scholar
  158. 158.
    Petingi L., Rodriguez J.: A new technique for the characterization of graphs with a maximum number of spanning trees. Discrete Math. 244, 351–373 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  159. 159.
    Petingi L., Talanfha M.: Packing the Steiner trees of a graph. Networks 54, 90–94 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  160. 160.
    Plesnik J.: On the sum of all distances in a graph or digraph. J. Graph Theory 8, 1–21 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  161. 161.
    Plummer M.D.: Graph factors and factorization: 1985–2003: a survey. Discrete Math. 307, 791–821 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  162. 162.
    Prüfer H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27, 142–144 (1918)Google Scholar
  163. 163.
    Rahman M.S., Kaykobad M.: Complexities of some interesting problems on spanning trees. Inform. Process. Lett. 94, 93–97 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  164. 164.
    Rivera-Campo E.: An Ore-type condition for the existence of spanning trees with bounded degrees. Congr. Numer. 90, 19–32 (1992)MathSciNetGoogle Scholar
  165. 165.
    Rivera-Campo E.: A note on matchings and spanning trees with bounded degrees. Graphs Combin. 13, 159–165 (1997)MathSciNetzbMATHGoogle Scholar
  166. 166.
    Salamon G.: Approximation algorithms for the maximum internal spanning tree problem. Lect. Notes Comput. Sci. 4708, 90–102 (2007)CrossRefGoogle Scholar
  167. 167.
    Salamon G., Wiener G.: On finding spanning trees with few leaves. Inform. Process. Lett. 105, 164–169 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  168. 168.
    Sanders D.P., Zhao Y.: On spanning trees and walks of low maximum degree. J. Graph Theory 36, 67–74 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  169. 169.
    Seymour, P.D.: Sums of Circuits, Graph Theory and Relation Topics, pp. 341–355. Academic Press, New York (1979)Google Scholar
  170. 170.
    Shank H.: A note on hamilton circuits in tree graphs. IEEE Trans. Circuit Theory 15, 86 (1968)MathSciNetCrossRefGoogle Scholar
  171. 171.
    Solis-Oba R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. Lect. Notes Comput. Sci. 1461, 441–452 (1998)MathSciNetCrossRefGoogle Scholar
  172. 172.
    Szabó J.: Packing trees with constraints on the leaf degree. Graphs Combin. 24, 485–494 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  173. 173.
    Szekeres G.: Polyhedral decomposition of cubic graphs. Bull. Austral. Math. Soc. 8, 367–387 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  174. 174.
    Thomassen C.: Trees in triangulations. J. Combin. Theory Ser. B 60, 56–62 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  175. 175.
    Tsugaki M.: A note on a spanning 3-tree. Combinatorica 29, 127–129 (2009)MathSciNetCrossRefGoogle Scholar
  176. 176.
    Tsugaki M., Yamashita T.: Spanning trees with few leaves. Graphs Combin. 23, 585–598 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  177. 177.
    Tutte W.T.: On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc. 36, 221–230 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  178. 178.
    West D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  179. 179.
    Whitty R.W.: Vertex-disjoint paths and edge-disjoint branchings in directed graphs. J. Graph Theory 11, 349–358 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  180. 180.
    Win S.: Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen (German). Abh. Math. Sem. Univ. Hamburg 43, 263–267 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  181. 181.
    Win S.: On a conjecture of Las Vergnas concerning certain spanning trees in graphs. Result. Math. 2, 215–224 (1979)MathSciNetzbMATHGoogle Scholar
  182. 182.
    Win S.: On a connection between the existence of k-trees and the toughness of a graph. Graphs Combin. 5, 201–205 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  183. 183.
    Wong R.: Worst-case analysis of network design problem heuristics. SIAM J. Algebraic Discrete Math. 1, 51–63 (1980)CrossRefzbMATHGoogle Scholar
  184. 184.
    Wu B.Y., Chao K.M., Tang C.Y.: Approximation algorithms for the shortest total path length spanning tree problem. Discrete Appl. Math. 105, 273–289 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  185. 185.
    Wu B.Y., Lancia G., Bafna V., Chao K.M., Ravi R., Tang C.Y.: A polynomial-time approximation scheme for minimum routing cost spanning trees. SIAM J. Comput. 29, 761–778 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  186. 186.
    Yong X.R., Acenjian T.: The numbers of spanning trees of the cycle C 3 N and the quadruple cycle C 4 N. Discrete Math. 169, 293–298 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  187. 187.
    Yoshimoto K.: The connectivities of trunk graphs of 2-connected graphs. Ars Combin. 60, 225–237 (2001)MathSciNetzbMATHGoogle Scholar
  188. 188.
    Yu X.: Disjoint paths, planarizing cycles, and spanning walks. Trans. Am. Math. Soc. 349, 1333–1358 (1997)CrossRefzbMATHGoogle Scholar
  189. 189.
    Zehavi A., Itai A.: Three tree-paths. J. Graph Theory 13, 175–188 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  190. 190.
    Zhan S.M.: On Hamiltonian line graphs and connectivity. Discrete Math. 89, 89–95 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  191. 191.
    Zhang F.J., Chen Z.: Connectivity of (adjacency) tree graphs. J. Xinjiang Univ. Nat. Sci. 3, 1–5 (1986)zbMATHGoogle Scholar
  192. 192.
    Zhang Y., Yong X., Golin M.J.: The number of spanning trees in circulant graphs. Discrete Math. 223, 337–350 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  193. 193.
    Zhenhong L., Baoguang X.: On low bound of degree sequences of spanning trees in k-edge- connected graphs. J. Graph Theory 28, 87–95 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  194. 194.
    Zioło I.A.: Subforests of bipartite figraphs—the minimum degree condition. Discrete Math. 236, 351–365 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  195. 195.
    Zioło I.A.: Subtrees of bipartite figraphs—the minimum degree condition. Discrete Appl. Math. 99, 251–259 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.College of Liberal Arts and SciencesKitasato UniversitySagamihara, KanagawaJapan

Personalised recommendations